Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Pathog ; 20(5): e1012279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814988

RESUMEN

The influenza A virus (IAV) consists of 8 single-stranded, negative-sense viral RNA (vRNA) segments. After infection, vRNA is transcribed, replicated, and wrapped by viral nucleoprotein (NP) to form viral ribonucleoprotein (vRNP). The transcription, replication, and nuclear export of the viral genome are regulated by the IAV protein, NS2, which is translated from spliced mRNA transcribed from viral NS vRNA. This splicing is inefficient, explaining why NS2 is present in low abundance after IAV infection. The levels of NS2 and its subsequent accumulation are thought to influence viral RNA replication and vRNP nuclear export. Here we show that NS2 is ubiquitinated at the K64 and K88 residues by K48-linked and K63-linked polyubiquitin (polyUb) chains, leading to the degradation of NS2 by the proteasome. Additionally, we show that a host deubiquitinase, OTUB1, can remove polyUb chains conjugated to NS2, thereby stabilizing NS2. Accordingly, knock down of OTUB1 by siRNA reduces the nuclear export of vRNP, and reduces the overall production of IAV. These results collectively demonstrate that the levels of NS2 in IAV-infected cells are regulated by a ubiquitination-deubiquitination system involving OTUB1 that is necessary for optimal IAV replication.


Asunto(s)
Cisteína Endopeptidasas , Virus de la Influenza A , Proteínas no Estructurales Virales , Replicación Viral , Animales , Perros , Humanos , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Enzimas Desubicuitinizantes/metabolismo , Células HEK293 , Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Gripe Humana/virología , ARN Viral/metabolismo , ARN Viral/genética , Ubiquitinación , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral/fisiología , Línea Celular , Células Vero , Chlorocebus aethiops
2.
Virus Res ; 345: 199387, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719025

RESUMEN

Influenza A virus can infect respiratory tracts and may cause severe illness in humans. Proteins encoded by influenza A virus can interact with cellular factors and dysregulate host biological processes to support viral replication and cause pathogenicity. The influenza viral PA protein is not only a subunit of influenza viral polymerase but also a virulence factor involved in pathogenicity during infection. To explore the role of the influenza virus PA protein in regulating host biological processes, we performed immunoprecipitation and LC‒MS/MS to globally identify cellular factors that interact with the PA proteins of the influenza A H1N1, 2009 pandemic H1N1, and H3N2 viruses. The results demonstrated that proteins located in the mitochondrion, proteasome, and nucleus are associated with the PA protein. We further discovered that the PA protein is partly located in mitochondria by immunofluorescence and mitochondrial fractionation and that overexpression of the PA protein reduces mitochondrial respiration. In addition, our results revealed the interaction between PA and the mitochondrial matrix protein PYCR2 and the antiviral role of PYCR2 during influenza A virus replication. Moreover, we found that the PA protein could also trigger autophagy and disrupt mitochondrial homeostasis. Overall, our research revealed the impacts of the influenza A virus PA protein on mitochondrial function and autophagy.


Asunto(s)
Mitocondrias , Proteínas Virales , Replicación Viral , Humanos , Mitocondrias/metabolismo , Mitocondrias/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Virus de la Influenza A/fisiología , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/metabolismo , Interacciones Huésped-Patógeno , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Autofagia , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Células HEK293 , Gripe Humana/virología , Gripe Humana/metabolismo , Células A549 , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Espectrometría de Masas en Tándem
3.
J Cell Biochem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720641

RESUMEN

Enterovirus A71 (EV-A71) belongs to the genus Enterovirus of the Picornaviridae family and often causes outbreaks in Asia. EV-A71 infection usually causes hand, foot, and mouth disease and can even affect the central nervous system, causing neurological complications or death. The 5'-untranslated region (5'-UTR) of EV-A71 contains an internal ribosome entry site (IRES) that is responsible for the translation of viral proteins. IRES-transacting factors can interact with the EV-A71 5'-UTR to regulate IRES activity. Heterogeneous nuclear ribonucleoprotein (hnRNP) A3 is a member of the hnRNP A/B protein family of RNA-binding proteins and is involved in RNA transport and modification. We found that hnRNP A3 knockdown promoted the replication of EV-A71 in neural calls. Conversely, increasing the expression of hnRNP A3 within cells inhibits the growth of EV-A71. HnRNP A3 can bind to the EV-A71 5'-UTR, and knockdown of hnRNP A3 enhances the luciferase activity of the EV-A71 5'-UTR IRES. The localization of hnRNP A3 shifts from the nucleus to the cytoplasm of infected cells during viral infection. Additionally, EV-A71 infection can increase the protein expression of hnRNP A3, and the protein level is correlated with efficient viral growth. Based on these findings, we concluded that hnRNP A3 plays a negative regulatory role in EV-A71 replication within neural cells.

4.
Biomed J ; 46(1): 70-80, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642222

RESUMEN

Since the COVID-19 pandemic was declared, vaccines against SARS-CoV-2 have been urgently developed around the world. On the basis of the mRNA vaccine technology developed previously, COVID-19 mRNA vaccines were promptly tested in animals, advanced to clinical trials, and then authorized for emergency use in humans. The administration of COVID-19 mRNA vaccines has successfully reduced the hospitalization and mortality caused by the viral infection, although the virus continuously evolves with its transmission. Therefore, the development of mRNA vaccine technology, including RNA modification and delivery systems, is well recognized for its contribution to moderating the harms caused by the COVID-19 pandemic. The scientists who developed these technologies, Katalin Karikó, Drew Weissman, and Pieter Cullis, were awarded the 2022 Tang Prize in Biopharmaceutical Science. In this review, we summarize the principles, safety and efficacy of as well as the immune response to COVID-19 mRNA vaccines. Since mRNA vaccine approaches could be practical for the prevention of infectious diseases, we also briefly describe mRNA vaccines against other human viral pathogens in clinical trials.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Pandemias/prevención & control , Vacunas de ARNm
5.
Virus Res ; 324: 199028, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36572153

RESUMEN

Influenza A viruses are common pathogens with high prevalence worldwide and potential for pandemic spread. While influenza A infections typically elicit robust cellular innate immune responses, the non-structural protein 1 (NS1) antagonizes host anti-viral responses and is critical for efficient virus replication and virulence. The avian influenza virus (AIV) H7N9 initially emerged in China in 2013 and has since crossed the avian-human barrier, causing severe disease in humans. To investigate the influence of the H7N9 NS gene (NS079) on viral replication and innate immune response, we generated several recombinant AIVs bearing various NS079 segments on the backbone of H6N1 (strain 0702). Intriguingly, the recombinant virus bearing the heterologous NS079 gene was highly attenuated compared with virus carrying the homologous NS gene (NS0702). Furthermore, we generated a NS079-0702R virus that expresses a chimeric NS gene in which part of the NS079 effector domain was replaced with the sequence from NS0702. The NS079-0702R virus exhibited significantly enhanced viral yield, approximately 100-fold more than virus bearing NS079. The high infection rate of NS079-0702R virus was reflected by strong induction of IFN and Mx expression in human A549 cells. Intriguingly, our in vitro comparative analysis suggested that the increased NS079-0702R infection capacity was independent of the ability of NS1 to interact with cellular partners, such as PKR and CPSF30. Since partial substitution of the effector domain from NS0702 altered the coding sequence of NS2, we further generated another recombinant virus with NS2 derived from H7N9. Surprisingly, the virus with H7N9-derived NS2 exhibited growth characteristics similar to NS079. Our data demonstrate that swapping NS2 components changes infection efficiency, suggesting a key role for NS2 as a determinant of viral compatibility upon reassortment. These findings warrant further investigation into the precise mechanisms by which NS2 contributes to viral replication and host immunity.1.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Aves , Línea Celular , Subtipo H7N9 del Virus de la Influenza A/genética
6.
Pathogens ; 11(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35889979

RESUMEN

Influenza A virus is transmitted through a respiratory route and has caused several pandemics throughout history. The NS1 protein of influenza A virus, which consists of an N-terminal RNA-binding domain and a C-terminal effector domain, is considered one of the critical virulence factors during influenza A virus infection because the viral protein can downregulate the antiviral response of the host cell and facilitate viral replication. Our previous study identified an N-terminus-truncated NS1 protein that covers the C-terminus effector domain. To comprehensively explore the role of the truncated NS1 in cells, we conducted immunoprecipitation coupled with LC-MS/MS to identify its interacting cellular proteins. There were 46 cellular proteins identified as the components of the truncated NS1 protein complex. As for our previous results for the identification of the full-length NS1-interacting host proteins, we discovered that the truncated NS1 protein interacts with the γ isoform of the 14-3-3 protein family. In addition, we found that the knockdown of 14-3-3γ in host cells reduced the replication of the influenza A/PR8 wild-type virus but not that of the PR8-NS1/1-98 mutant virus, which lacks most of the effector domain of NS1. This research highlights the role of 14-3-3γ, which interacts with the effector domain of NS1 protein, in influenza A viral replication.

7.
Front Microbiol ; 13: 812711, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733972

RESUMEN

Influenza A virus (IAV) has caused recurrent epidemics and severe pandemics. In this study, we adapted an MS2-MCP live-cell imaging system to visualize IAV replication. A reporter plasmid, pHH-PB2-vMSL, was constructed by replacing a part of the PB2-coding sequence in pHH-PB2 with a sequence encoding 24 copies of a stem-loop structure from bacteriophage MS2 (MSL). Binding of MS2 coat protein (MCP) fused to green fluorescent protein (GFP) to MSL enabled the detection of vRNA as fluorescent punctate signals in live-cell imaging. The introduction of pHH-PB2-vMSL into A549 cells transduced to express an MCP-GFP fusion protein lacking the nuclear localization signal (MCP-GFPdN), subsequently allowed tracking of the distribution and replication of PB2-vMSL vRNA after IAV PR8 infection. Spatial and temporal measurements revealed exponential increases in vRNA punctate signal intensity, which was only observed after membrane blebbing in apoptotic cells. Similar signal intensity increases in apoptotic cells were also observed after MDCK cells, transduced to express MCP-GFPdN, were infected with IAV carrying PB2-vMSL vRNA. Notably, PB2-vMSL vRNA replication was observed to occur only in apoptotic cells, at a consistent time after apoptosis initiation. There was a lack of observable PB2-vMSL vRNA replication in non-apoptotic cells, and vRNA replication was suppressed in the presence of apoptosis inhibitors. These findings point to an important role for apoptosis in IAV vRNA replication. The utility of the MS2-imaging system for visualizing time-sensitive processes such as viral replication in live host cells is also demonstrated in this study.

9.
mSphere ; 7(1): e0088321, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107336

RESUMEN

Considering the urgent demand for faster methods to quantify neutralizing antibody titers in patients with coronavirus (CoV) disease 2019 (COVID-19), developing an analytical model or method to replace the conventional virus neutralization test (NT) is essential. Moreover, a "COVID-19 immunity passport" is currently being proposed as a certification for people who travel internationally. Therefore, an enzyme-linked immunosorbent assay (ELISA) was designed to detect severe acute respiratory syndrome CoV 2 (SARS-CoV-2)-neutralizing antibodies in serum, which is based on the binding affinity of SARS-CoV-2 viral spike protein 1 (S1) and the viral spike protein receptor-binding domain (RBD) to antibodies. The RBD is considered the major binding region of neutralizing antibodies. Furthermore, S1 covers the RBD and several other regions, which are also important for neutralizing antibody binding. In this study, we assessed 144 clinical specimens, including those from patients with PCR-confirmed SARS-CoV-2 infections and healthy donors, using both the NT and ELISA. The ELISA results analyzed by spline regression and the two-variable generalized additive model precisely reflected the NT value, and the correlation between predicted and actual NT values was as high as 0.917. Therefore, our method serves as a surrogate to quantify neutralizing antibody titer. The analytic method and platform used in this study present a new perspective for serological testing of SARS-CoV-2 infection and have clinical potential to assess vaccine efficacy. IMPORTANCE Herein, we present a new approach for serological testing for SARS-CoV-2 antibodies using innovative laboratory methods that demonstrate a combination of biology and mathematics. The traditional virus neutralization test is the gold standard method; however, it is time-consuming and poses a risk to medical personnel. Thus, there is a demand for methods that rapidly quantify neutralizing antibody titers in patients with COVID-19 or examine vaccine efficacy at a biosafety level 2 containment facility. Therefore, we used a two-variable generalized additive model to analyze the results of the enzyme-linked immunosorbent assay and found the method to serve as a surrogate to quantify neutralizing antibody titers. This methodology has potential for clinical use in assessing vaccine efficacy.


Asunto(s)
Anticuerpos Neutralizantes/sangre , COVID-19/inmunología , Ensayo de Inmunoadsorción Enzimática , Modelos Inmunológicos , Modelos Estadísticos , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , Biomarcadores/sangre , COVID-19/sangre , COVID-19/diagnóstico , Estudios de Casos y Controles , Humanos , Análisis de Regresión
10.
J Clin Immunol ; 42(3): 606-617, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35040013

RESUMEN

PURPOSE: Enterovirus A71 (EV71) causes a broad spectrum of childhood diseases, ranging from asymptomatic infection or self-limited hand-foot-and-mouth disease (HFMD) to life-threatening encephalitis. The molecular mechanisms underlying these different clinical presentations remain unknown. We hypothesized that EV71 encephalitis in children might reflect an intrinsic host single-gene defect of antiviral immunity. We searched for mutations in the toll-like receptor 3 (TLR3) gene. Such mutations have already been identified in children with herpes simplex virus encephalitis (HSE). METHODS: We sequenced TLR3 and assessed the impact of the mutations identified. We tested dermal fibroblasts from a patient with EV71 encephalitis and a TLR3 mutation and other patients with known genetic defects of TLR3 or related genes, assessing the response of these cells to TLR3 agonist poly(I:C) stimulation and EV71 infection. RESULTS: Three children with EV71 encephalitis were heterozygous for rare mutations-TLR3 W769X, E211K, and R867Q-all of which were shown to affect TLR3 function. Furthermore, fibroblasts from the patient heterozygous for the W769X mutation displayed an impaired, but not abolished, response to poly(I:C). We found that TLR3-deficient and TLR3-heterozygous W769X fibroblasts were highly susceptible to EV71 infection. CONCLUSIONS: Autosomal dominant TLR3 deficiency may underlie severe EV71 infection with encephalitis. Human TLR3 immunity is essential to protect the central nervous system against HSV-1 and EV71. Children with severe EV71 infections, such as encephalitis in particular, should be tested for inborn errors of TLR3 immunity.


Asunto(s)
Encefalitis por Herpes Simple , Encefalitis Viral , Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Células Cultivadas , Niño , Encefalitis por Herpes Simple/diagnóstico , Encefalitis por Herpes Simple/genética , Encefalitis Viral/diagnóstico , Encefalitis Viral/genética , Enterovirus Humano A/genética , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/genética , Humanos , Poli I-C , Receptor Toll-Like 3/genética
11.
J Virol ; 95(20): e0023121, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379499

RESUMEN

The NS1 protein of the influenza A virus plays a critical role in regulating several biological processes in cells, including the type I interferon (IFN) response. We previously profiled the cellular factors that interact with the NS1 protein of influenza A virus and found that the NS1 protein interacts with proteins involved in RNA splicing/processing, cell cycle regulation, and protein targeting processes, including 14-3-3ε. Since 14-3-3ε plays an important role in retinoic acid-inducible gene I (RIG-I) translocation to mitochondrial antiviral-signaling protein (MAVS) to activate type I IFN expression, the interaction of the NS1 and 14-3-3ε proteins may prevent the RIG-I-mediated IFN response. In this study, we confirmed that the 14-3-3ε protein interacts with the N-terminal domain of the NS1 protein and that the NS1 protein inhibits RIG-I-mediated IFN-ß promoter activation in 14-3-3ε-overexpressing cells. In addition, our results showed that knocking down 14-3-3ε can reduce IFN-ß expression elicited by influenza A virus and enhance viral replication. Furthermore, we found that threonine in the 49th amino acid position of the NS1 protein plays a role in the interaction with 14-3-3ε. Influenza A virus expressing C terminus-truncated NS1 with a T49A mutation dramatically increases IFN-ß mRNA in infected cells and causes slower replication than that of virus without the T-to-A mutation. Collectively, this study demonstrates that 14-3-3ε is involved in influenza A virus-initiated IFN-ß expression and that the interaction of the NS1 protein and 14-3-3ε may be one of the mechanisms for inhibiting type I IFN activation during influenza A virus infection. IMPORTANCE Influenza A virus is an important human pathogen causing severe respiratory disease. The virus has evolved several strategies to dysregulate the innate immune response and facilitate its replication. We demonstrate that the NS1 protein of influenza A virus interacts with the cellular chaperone protein 14-3-3ε, which plays a critical role in retinoic acid-inducible gene I (RIG-I) translocation that induces type I interferon (IFN) expression, and that NS1 protein prevents RIG-I translocation to the mitochondrial membrane. The interaction site for 14-3-3ε is the RNA-binding domain (RBD) of the NS1 protein. Therefore, this research elucidates a novel mechanism by which the NS1 RBD mediates IFN-ß suppression to facilitate influenza A viral replication. Additionally, the findings reveal the antiviral role of 14-3-3ε during influenza A virus infection.


Asunto(s)
Proteínas 14-3-3/inmunología , Gripe Humana/inmunología , Interferón beta/metabolismo , Proteínas 14-3-3/metabolismo , Línea Celular Tumoral , Proteína 58 DEAD Box/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata/inmunología , Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Interferón beta/fisiología , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , ARN Viral/genética , Receptores Inmunológicos/metabolismo , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
12.
mBio ; 12(4): e0094521, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34311580

RESUMEN

Cellular 5'-3' exoribonuclease 1 (XRN1) is best known for its role as a decay factor, which by degrading 5' monophosphate RNA after the decapping of DCP2 in P-bodies (PBs) in Drosophila, yeast, and mammals. XRN1 has been shown to degrade host antiviral mRNAs following the influenza A virus (IAV) PA-X-mediated exonucleolytic cleavage processes. However, the mechanistic details of how XRN1 facilitates influenza A virus replication remain unclear. In this study, we discovered that XRN1 and nonstructural protein 1 (NS1) of IAV are directly associated and colocalize in the PBs. Moreover, XRN1 downregulation impaired viral replication while the viral titers were significantly increased in cells overexpressing XRN1, which suggest that XRN1 is a positive regulator in IAV life cycle. We further demonstrated that the IAV growth curve could be suppressed by adenosine 3',5'-bisphosphate (pAp) treatment, an inhibitor of XRN1. In virus-infected XRN1 knockout cells, the phosphorylated interferon regulatory factor 3 (p-IRF3) protein, interferon beta (IFN-ß) mRNA, and interferon-stimulated genes (ISGs) were significantly increased, resulting in the enhancement of the host innate immune response and suppression of viral protein production. Our data suggest a novel mechanism by which the IAV hijacks the cellular XRN1 to suppress the host innate immune response and to facilitate viral replication. IMPORTANCE A novel mechanistic discovery reveals that the host decay factor XRN1 contributes to influenza A virus replication, which exploits XRN1 activity to inhibit RIG-I-mediated innate immune response. Here, we identified a novel interaction between viral NS1 and host XRN1. Knockdown and knockout of XRN1 expression in human cell lines significantly decreased virus replication while boosting RIG-I-mediated interferon immune response, suggesting that XRN1 facilitates influenza A virus replication. The pAp effect as XRN1 inhibitor was evaluated; we found that pAp was capable of suppressing viral growth. To our knowledge, this study shows for the first time that a negative-strand and nucleus-replicating RNA virus, as influenza A virus, can hijack cellular XRN1 to suppress the host RIG-I-dependent innate immune response. These findings provide new insights suggesting that host XRN1 plays a positive role in influenza A virus replication and that the inhibitor pAp may be used in novel antiviral drug development.


Asunto(s)
Exorribonucleasas/genética , Exorribonucleasas/inmunología , Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Interferón beta/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/inmunología , Replicación Viral , Células A549 , Regulación hacia Abajo , Humanos , Inmunidad Innata , Virus de la Influenza A/inmunología , Factor 3 Regulador del Interferón/inmunología , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/inmunología
13.
RNA Biol ; 18(5): 796-808, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406999

RESUMEN

The pathogenic human enterovirus EV-A71 has raised serious public health concerns. A hallmark of EV-A71 infection is the distortion of host transcriptomes in favour of viral replication. While high-throughput approaches have been exploited to dissect these gene dysregulations, they do not fully capture molecular perturbations at the single-cell level and in a physiologically relevant context. In this study, we applied a single-cell RNA sequencing approach on infected differentiated enterocyte cells (C2BBe1), which model the gastrointestinal epithelium targeted initially by EV-A71. Our single-cell analysis of EV-A71-infected culture provided several lines of illuminating observations: 1) This systems approach demonstrated extensive cell-to-cell variation in a single culture upon viral infection and delineated transcriptomic differences between the EV-A71-infected and bystander cells. 2) By analysing expression profiles of known EV-A71 receptors and entry facilitation factors, we found that ANXA2 was closely correlated in expression with the viral RNA in the infected population, supporting its role in EV-A71 entry in the enteric cells. 3) We further catalogued dysregulated lncRNAs elicited by EV-A71 infection and demonstrated the functional implication of lncRNA CYTOR in promoting EV-A71 replication. Viewed together, our single-cell transcriptomic analysis illustrated at the single-cell resolution the heterogeneity of host susceptibility to EV-A71 and revealed the involvement of lncRNAs in host antiviral response.


Asunto(s)
Enterovirus Humano A/patogenicidad , Interacciones Huésped-Patógeno/genética , Transcriptoma , Células Cultivadas , Enterocitos/metabolismo , Enterocitos/patología , Enterocitos/virología , Enterovirus Humano A/genética , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/genética , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/virología , ARN Largo no Codificante/genética , Análisis de la Célula Individual , Replicación Viral/genética
14.
Emerg Microbes Infect ; 9(1): 1457-1466, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32543353

RESUMEN

Taiwan experienced two waves of imported infections with Coronavirus Disease 2019 (COVID-19). This study aimed at investigating the genomic variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Taiwan and compared their evolutionary trajectories with the global strains. We performed culture and full-genome sequencing of SARS-CoV-2 strains followed by phylogenetic analysis. A 382-nucleotides deletion in open reading frame 8 (ORF8) was found in a Taiwanese strain isolated from a patient on February 4, 2020 who had a travel history to Wuhan. Patients in the first wave also included several sporadic, local transmission cases. Genomes of 5 strains sequenced from clustered infections were classified into a new clade with ORF1ab-V378I mutation, in addition to 3 dominant clades ORF8-L84S, ORF3a-G251V and S-D614G. This highlighted clade also included some strains isolated from patients who had a travel history to Turkey and Iran. The second wave mostly resulted from patients who had a travel history to Europe and Americas. All Taiwanese viruses were classified into various clades. Genomic surveillance of SARS-CoV-2 in Taiwan revealed a new ORF8-deletion mutant and a virus clade that may be associated with infections in the Middle East, which contributed to a better understanding of the global SARS-CoV-2 transmission dynamics.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/virología , Genoma Viral , Neumonía Viral/virología , Animales , Betacoronavirus/clasificación , Betacoronavirus/aislamiento & purificación , COVID-19 , Línea Celular , Chlorocebus aethiops , Haemophilus parainfluenzae/aislamiento & purificación , Humanos , Medio Oriente , Sistemas de Lectura Abierta , Pandemias , Filogenia , ARN Viral , SARS-CoV-2 , Eliminación de Secuencia , Taiwán , Viaje , Células Vero , Cultivo de Virus , Secuenciación Completa del Genoma
15.
Biomed J ; 43(4): 328-333, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32387617

RESUMEN

The novel human coronavirus disease COVID-19 has become the fifth documented pandemic since the 1918 flu pandemic. COVID-19 was first reported in Wuhan, China, and subsequently spread worldwide. The coronavirus was officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses based on phylogenetic analysis. SARS-CoV-2 is believed to be a spillover of an animal coronavirus and later adapted the ability of human-to-human transmission. Because the virus is highly contagious, it rapidly spreads and continuously evolves in the human population. In this review article, we discuss the basic properties, potential origin, and evolution of the novel human coronavirus. These factors may be critical for studies of pathogenicity, antiviral designs, and vaccine development against the virus.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/epidemiología , Coronavirus/patogenicidad , Filogenia , Neumonía Viral/epidemiología , Animales , COVID-19 , China/epidemiología , Humanos , Pandemias , SARS-CoV-2
16.
RNA Biol ; 17(4): 608-622, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32009553

RESUMEN

Enteroviruses, which may cause neurological complications, have become a public health threat worldwide in recent years. Interactions between cellular proteins and enteroviral proteins could interfere with cellular biological processes to facilitate viral replication in infected cells. Enteroviral RNA-dependent RNA polymerase (RdRP), known as 3D protein, mainly functions as a replicase for viral RNA synthesis in infected cells. However, the 3D protein encoded by enterovirus A71 (EV-A71) could also interact with several cellular proteins to regulate cellular events and responses during infection. To globally investigate the functions of the EV-A71 3D protein in regulating biological processes in host cells, we performed immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify host proteins that may associate with the 3D protein. We found that the 3D protein interacts with factors involved in translation-related biological processes, including ribosomal proteins. In addition, polysome profiling analysis showed that the 3D protein cosediments with small and large subunits of ribosomes. We further discovered that the EV-A71 3D protein could enhance EV-A71 internal ribosome entry site (IRES)-dependent translation as well as cap-dependent translation. Collectively, this research demonstrated that the RNA polymerase encoded by EV-A71 could join a functional ribosomal complex and positively regulate viral and host translation.


Asunto(s)
Enterovirus Humano A/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Línea Celular , Cromatografía Liquida , Células HEK293 , Células HeLa , Humanos , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , Espectrometría de Masas en Tándem , Proteínas Virales/metabolismo
17.
Stem Cell Res Ther ; 10(1): 387, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31843025

RESUMEN

BACKGROUND: Neural stem cells (NSCs) residing in the central nervous system play an important role in neurogenesis. Several viruses can infect these neural progenitors and cause severe neurological diseases. The innate immune responses against the neurotropic viruses in these tissue-specific stem cells remain unclear. METHODS: Human NSCs were transfected with viral RNA mimics or infected with neurotropic virus for detecting the expression of antiviral interferons (IFNs) and downstream IFN-stimulated antiviral genes. RESULTS: NSCs are able to produce interferon-ß (IFN-ß) (type I) and λ1 (type III) after transfection with poly(I:C) and that downstream IFN-stimulated antiviral genes, such as ISG56 and MxA, and the viral RNA sensors RIG-I, MDA5, and TLR3, can be expressed in NSCs under poly(I:C) or IFN-ß stimulation. In addition, our results show that the pattern recognition receptors RIG-I and MDA5, as well as the endosomal pathogen recognition receptor TLR3, but not TLR7 and TLR8, are involved in the activation of IFN-ß transcription in NSCs. Furthermore, NSCs infected with the neurotropic viruses, Zika and Japanese encephalitis viruses, are able to induce RIG-I-mediated IFN-ß expression. CONCLUSION: Human NSCs have the ability to activate IFN signals against neurotropic viral pathogens.


Asunto(s)
Interferón Tipo I/inmunología , Células-Madre Neurales/inmunología , Células-Madre Neurales/virología , Infección por el Virus Zika/inmunología , Línea Celular , Células Cultivadas , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/inmunología , Virus de la Encefalitis Japonesa (Subgrupo)/inmunología , Encefalitis Japonesa/genética , Encefalitis Japonesa/inmunología , Humanos , Inmunidad Innata , Interferón Tipo I/biosíntesis , Interferón beta/biosíntesis , Interferón beta/genética , Interferón beta/inmunología , Interferones/genética , Interferones/inmunología , Células-Madre Neurales/patología , Receptores Inmunológicos , Transcripción Genética , Transfección , Virus Zika/inmunología , Infección por el Virus Zika/genética , Infección por el Virus Zika/patología , Interferón lambda
18.
Mol Ther Nucleic Acids ; 17: 10-23, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31173947

RESUMEN

The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in human cells and ferret animal models. miR-1290 was observed to target and reduce expression of the host vimentin gene. Vimentin binds with the PB2 subunit of influenza A virus ribonucleoprotein (vRNP), and knockdown of vimentin expression significantly increased vRNP nuclear retention and viral polymerase activity. Interestingly, miR-1290 was not detected in either chicken cells or mouse animal models, and the 3' UTR of the chicken vimentin gene contains no binding site for miR-1290. These findings point to a host species-specific mechanism by which IAV upregulates miR-1290 to disrupt vimentin expression and retain vRNP in the nucleus, thereby enhancing viral polymerase activity and viral replication.

19.
RNA Biol ; 16(9): 1263-1274, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31135270

RESUMEN

The innate immune system is the frontline host protection against pathogens. Effective antiviral immunity is elicited upon recognition of viral RNAs by the host pattern recognition receptors. One of the major viral RNA sensors is retinoic acid inducible gene-1, which triggers the production of interferons (IFNs). In turn, this protective response requires another viral sensor and immunity factor interferon-inducible protein kinase RNA activator (PACT/PRKRA). Here, we report the identification and characterization of a novel antisense PACT gene that expresses a non-coding RNA in a convergent and interferon-inducible manner. Publicly available gene structure and expression data revealed that this gene, that we termed ASPACT, overlaps with the 3' -end of the PACT locus and is highly expressed during viral infection. Our results confirm the IFN-ß-inducibility of ASPACT, which is dependent on STAT-1/2. We further discovered that downregulation of ASPACT impacts both the expression and localization of the PACT transcript. At the transcription level, ChIP and ChIRP assays demonstrated that the ASPACT non-coding RNA occupies distinct chromatin regions of PACT gene and is important for promoter recruitment of the epigenetic silencer HDAC1. In parallel, ASPACT was also found to mediate nuclear retention of the PACT mRNA via direct RNA-RNA interaction, as revealed by RNA antisense purification assay. In summary, our results support the model that the non-coding RNA ASPACT acts as a negative regulator of PACT at multiple levels, and reveal a novel regulator of the viral counteractive response.


Asunto(s)
ARN sin Sentido/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Núcleo Celular/metabolismo , Epigénesis Genética , Células HEK293 , Células HeLa , Histona Desacetilasa 1/metabolismo , Humanos , Inmunidad Innata , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Transcripción Genética
20.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30814289

RESUMEN

Infection by enteroviruses can cause severe neurological complications in humans. The interactions between the enteroviral and host proteins may facilitate the virus replication and be involved in the pathogenicity of infected individuals. It has been shown that human enteroviruses possess various mechanisms to suppress host innate immune responses in infected cells. Previous studies showed that infection by enterovirus 71 (EV71) causes the degradation of MDA5, which is a critical cytoplasmic pathogen sensor in the recognition of picornaviruses for initiating transcription of type I interferons. In the present study, we demonstrated that the RNA-dependent RNA polymerase (RdRP; also denoted 3Dpol) encoded by EV71 interacts with the caspase activation and recruitment domains (CARDs) of MDA5 and plays a role in the inhibition of MDA5-mediated beta interferon (IFN-ß) promoter activation and mRNA expression. In addition, we found that the 3Dpol protein encoded by coxsackievirus B3 also interacted with MDA5 and downregulated the antiviral signaling initiated by MDA5. These findings indicate that enteroviral RdRP may function as an antagonist against the host antiviral innate immune response.IMPORTANCE Infection by enteroviruses causes severe neurological complications in humans. Human enteroviruses possess various mechanisms to suppress the host type I interferon (IFN) response in infected cells to establish viral replication. In the present study, we found that the enteroviral 3Dpol protein (or RdRP), which is a viral RNA-dependent RNA polymerase for replicating viral RNA, plays a role in the inhibition of MDA5-mediated beta interferon (IFN-ß) promoter activation. We further demonstrated that enteroviral 3Dpol protein interacts with the caspase activation and recruitment domains (CARDs) of MDA5. These findings indicate that enteroviral RdRP functions as an antagonist against the host antiviral response.


Asunto(s)
Enterovirus Humano A/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Dominio de Reclutamiento y Activación de Caspasas/genética , Dominio de Reclutamiento y Activación de Caspasas/fisiología , Enterovirus/genética , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano B/metabolismo , Infecciones por Enterovirus/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Interferón beta/metabolismo , Interferones/metabolismo , Interferones/fisiología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Transducción de Señal , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA