Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Microbiol Res ; 285: 127776, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38820701

RESUMEN

Applying beneficial microorganisms (BM) as bioinoculants presents a promising soil-amendment strategy while impacting the native microbiome, which jointly alters soil-plant performance. Leveraging the untapped potential of native microbiomes alongside bioinoculants may enable farmers to sustainably regulate soil-plant systems via natural bioresources. This review synthesizes literature on native microbiome responses to BMs and their interactive effects on soil and plant performance. We highlight that native microbiomes harbor both microbial "helpers" that can improve soil fertility and plant productivity, as well as "inhibitors" that hinder these benefits. To harness the full potential of resident microbiome, it is crucial to elucidate their intricate synergistic and antagonistic interplays with introduced BMs and clarify the conditions that facilitate durable BM-microbiome synergies. Hence, we indicate current challenges in predicting these complex microbial interactions and propose corresponding strategies for microbiome breeding via BM bioinoculant. Overall, fully realizing the potential of BMs requires clarifying their interactions with native soil microbiomes and judiciously engineering microbiome to harness helpful microbes already present within agroecosystems.


Asunto(s)
Agricultura , Microbiota , Microbiología del Suelo , Suelo , Microbiota/fisiología , Suelo/química , Agricultura/métodos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Productos Agrícolas/microbiología , Plantas/microbiología , Interacciones Microbianas
2.
Microorganisms ; 12(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38674704

RESUMEN

Compared with typical Earth soil, Martian soil and Mars simulant soils have distinct properties, including pH > 8.0 and high contents of silicates, iron-rich minerals, sulfates, and metal oxides. This unique soil matrix poses a major challenge for extracting microbial DNA. In particular, mineral adsorption and the generation of destructive hydroxyl radicals through cationic redox cycling may interfere with DNA extraction. This study evaluated different protocols for extracting microbial DNA from Mars Global Simulant (MGS-1), a Mars simulant soil. Two commercial kits were tested: the FastDNA SPIN Kit for soil ("MP kit") and the DNeasy PowerSoil Pro Kit ("PowerSoil kit"). MGS-1 was incubated with living soil for five weeks, and DNA was extracted from aliquots using the kits. After extraction, the DNA was quantified with a NanoDrop spectrophotometer and used as the template for 16S rRNA gene amplicon sequencing and qPCR. The MP kit was the most efficient, yielding approximately four times more DNA than the PowerSoil kit. DNA extracted using the MP kit with 0.5 g soil resulted in 28,642-37,805 16S rRNA gene sequence reads and 30,380-42,070 16S rRNA gene copies, whereas the 16S rRNA gene could not be amplified from DNA extracted using the PowerSoil kit. We suggest that the FastDNA SPIN Kit is the best option for studying microbial communities in Mars simulant soils.

3.
Cell Rep ; 43(4): 113971, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38537644

RESUMEN

Sorghum bicolor is among the most important cereals globally and a staple crop for smallholder farmers in sub-Saharan Africa. Approximately 20% of sorghum yield is lost annually in Africa due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies are not singularly effective and integrated approaches are needed. Here, we demonstrate the functional potential of the soil microbiome to suppress Striga infection in sorghum. We associate this suppression with microbiome-mediated induction of root endodermal suberization and aerenchyma formation and with depletion of haustorium-inducing factors, compounds required for the initial stages of Striga infection. We further identify specific bacterial taxa that trigger the observed Striga-suppressive traits. Collectively, our study describes the importance of the soil microbiome in the early stages of root infection by Striga and pinpoints mechanisms of Striga suppression. These findings open avenues to broaden the effectiveness of integrated Striga management practices.


Asunto(s)
Microbiota , Raíces de Plantas , Microbiología del Suelo , Sorghum , Striga , Sorghum/microbiología , Sorghum/metabolismo , Striga/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Metaboloma , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología
4.
Nat Commun ; 15(1): 1649, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38388537

RESUMEN

Microbial communities, acting as key drivers of ecosystem processes, harbour immense potential for sustainable agriculture practices. Phosphate-solubilising microorganisms, for example, can partially replace conventional phosphate fertilisers, which rely on finite resources. However, understanding the mechanisms and engineering efficient communities poses a significant challenge. In this study, we employ two artificial selection methods, environmental perturbation, and propagation, to construct phosphate-solubilising microbial communities. To assess trait transferability, we investigate the community performance in different media and a hydroponic system with Chrysanthemum indicum. Our findings reveal a distinct subset of phosphate-solubilising bacteria primarily dominated by Klebsiella and Enterobacterales. The propagated communities consistently demonstrate elevated levels of phosphate solubilisation, surpassing the starting soil community by 24.2% in activity. The increased activity of propagated communities remains consistent upon introduction into the hydroponic system. This study shows the efficacy of community-level artificial selection, particularly through propagation, as a tool for successfully modifying microbial communities to enhance phosphate solubilisation.


Asunto(s)
Microbiota , Fosfatos , Ecosistema , Microbiología del Suelo , Agricultura , Suelo , Microbiota/genética
5.
ISME Commun ; 3(1): 104, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752280

RESUMEN

Soil aggregates contain distinct physio-chemical properties across different size classes. These differences in micro-habitats support varied microbial communities and modulate the effect of plant on microbiome, which affect soil functions such as disease suppression. However, little is known about how the residents of different soil aggregate size classes are impacted by plants throughout their growth stages. Here, we examined how tomato plants impact soil aggregation and bacterial communities within different soil aggregate size classes. Moreover, we investigated whether aggregate size impacts the distribution of soil pathogen and their potential inhibitors. We collected samples from different tomato growth stages: before-planting, seedling, flowering, and fruiting stage. We measured bacterial density, community composition, and pathogen abundance using qPCR and 16 S rRNA gene sequencing. We found the development of tomato growth stages negatively impacted root-adhering soil aggregation, with a gradual decrease of large macro-aggregates (1-2 mm) and an increase of micro-aggregates (<0.25 mm). Additionally, changes in bacterial density and community composition varied across soil aggregate size classes. Furthermore, the pathogen exhibited a preference to micro-aggregates, while macro-aggregates hold a higher abundance of potential pathogen-inhibiting taxa and predicted antibiotic-associated genes. Our results indicate that the impacts of tomatoes on soil differ for different soil aggregate size classes throughout different plant growth stages, and plant pathogens and their potential inhibitors have different habitats within soil aggregate size classes. These findings highlight the importance of fine-scale heterogeneity of soil aggregate size classes in research on microbial ecology and agricultural sustainability, further research focuses on soil aggregates level could help identify candidate tax involved in suppressing pathogens in the virtual micro-habitats.

6.
Sci Total Environ ; 890: 164347, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37230351

RESUMEN

The challenges of nitrogen (N) management in agricultural fields include minimizing N losses while maximizing profitability and soil health. Crop residues can alter N and carbon (C) cycle processes in the soil and modulate the responses of the subsequent crop and soil- microbe-plant interactions. Here, we aim to understand how organic amendments with low and high C/N ratio, combined or not with mineral N may change soil bacterial community and their activity in the soil. Organic amendments with different C/N ratios were combined or not with N fertilization as follows: i) unamended soil (control), ii) grass clover silage (GC; low C/N ratio), and iii) wheat straw (WS; high C/N ratio). The organic amendments modulated the bacterial community assemblage and increased microbial activity. WS amendment had the strongest effects on hot water extractable carbon, microbial biomass N and soil respiration, which were linked with changes in bacterial community composition compared with GC-amended and unamended soil. By contrast, N transformation processes in the soil were more pronounced in GC-amended and unamended soil than in WS-amended soil. These responses were stronger in the presence of mineral N input. WS amendment induced greater N immobilization in the soil, even with mineral N input, impairing crop development. Interestingly, N input in unamended soil altered the co-dependence between the soil and the bacterial community to favor a new co-dependence among the soil, plant and microbial activity. In GC-amended soil, N fertilization shifted the dependence of the crop plant from the bacterial community to soil characteristics. Finally, the combined N input with WS amendment (organic carbon input) placed microbial activity at the center of the interrelationships between the bacterial community, plant, and soil. This emphasizes the crucial importance of microorganisms in the functioning of agroecosystems. To achieve higher yields in crops managed with various organic amendments, it is essential to incorporate mineral N management practices. This becomes particularly crucial when the soil amendments have a high C/N ratio.


Asunto(s)
Nitrógeno , Suelo , Suelo/química , Carbono , Productos Agrícolas , Triticum , Microbiología del Suelo , Bacterias , Fertilizantes
7.
Bioresour Technol ; 381: 129132, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37149269

RESUMEN

To excavate a complex co-degradation system for decomposing cellulose more efficiently, cellulose-degrading bacteria, including Bacillus subtilis WF-8, Bacillus licheniformis WF-11, Bacillus Cereus WS-1 and Streptomyces Nogalater WF-10 were added during maize straw and cattle manure aerobic composting. Bacillus and Streptomyces successfully colonized, which improve cellulose degrading ability. Continuous colonization of cellulose-degrading bacteria can promote the fungi to produce more precursors for humus and promote the negative correlation with Ascomycota. In the current study, the addition of cellulose-degrading bacteria has resulted in the rapid development of Mycothermus and Remersonia in the phylum Ascomycota as keystone fungal genera which constitute the foundation of the co-degradation system. Network analysis reveals the complex co-degradation system of efficient cellulose bacteria and mature fungi to treat cellulose in the process of straw aerobic composting mainly related to the influence of total carbon (TC) /total nitrogen (TN) and humic acid (HA)/fulvic acid (FA). This research offers a complex co-degradation system more efficiently to decompose cellulose aiming to maintain the long-term sustainability of agriculture.


Asunto(s)
Celulosa , Compostaje , Animales , Bovinos , Celulosa/metabolismo , Agricultura , Suelo , Bacillus subtilis/metabolismo , Estiércol/microbiología
8.
Microbiome ; 10(1): 196, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419170

RESUMEN

BACKGROUND: The assembly of the rhizomicrobiome, i.e., the microbiome in the soil adhering to the root, is influenced by soil conditions. Here, we investigated the core rhizomicrobiome of a wild plant species transplanted to an identical soil type with small differences in chemical factors and the impact of these soil chemistry differences on the core microbiome after long-term cultivation. We sampled three natural reserve populations of wild rice (i.e., in situ) and three populations of transplanted in situ wild rice grown ex situ for more than 40 years to determine the core wild rice rhizomicrobiome. RESULTS: Generalized joint attribute modeling (GJAM) identified a total of 44 amplicon sequence variants (ASVs) composing the core wild rice rhizomicrobiome, including 35 bacterial ASVs belonging to the phyla Actinobacteria, Chloroflexi, Firmicutes, and Nitrospirae and 9 fungal ASVs belonging to the phyla Ascomycota, Basidiomycota, and Rozellomycota. Nine core bacterial ASVs belonging to the genera Haliangium, Anaeromyxobacter, Bradyrhizobium, and Bacillus were more abundant in the rhizosphere of ex situ wild rice than in the rhizosphere of in situ wild rice. The main ecological functions of the core microbiome were nitrogen fixation, manganese oxidation, aerobic chemoheterotrophy, chemoheterotrophy, and iron respiration, suggesting roles of the core rhizomicrobiome in improving nutrient resource acquisition for rice growth. The function of the core rhizosphere bacterial community was significantly (p < 0.05) shaped by electrical conductivity, total nitrogen, and available phosphorus present in the soil adhering to the roots. CONCLUSION: We discovered that nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the core rhizomicrobiome of the wild rice Oryza rufipogon. Our findings suggest that further potential utilization of the core rhizomicrobiome should consider the effects of soil properties on the abundances of different genera. Video Abstract.


Asunto(s)
Oryza , Oryza/microbiología , Nitrógeno , Carbono , Manganeso , Hierro , Bacterias/genética , Suelo
9.
Microorganisms ; 10(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36296177

RESUMEN

Soil microbial communities are essential components of agroecological ecosystems that influence soil fertility, nutrient turnover, and plant productivity. Metagenomics data are increasingly easy to obtain, but studies of soil metagenomics face three key challenges: (1) accounting for soil physicochemical properties; (2) incorporating untreated controls; and (3) sharing data. Accounting for soil physicochemical properties is crucial for better understanding the changes in soil microbial community composition, mechanisms, and abundance. Untreated controls provide a good baseline to measure changes in soil microbial communities and separate treatment effects from random effects. Sharing data increases reproducibility and enables meta-analyses, which are important for investigating overall effects. To overcome these challenges, we suggest establishing standard guidelines for the design of experiments for studying soil metagenomics. Addressing these challenges will promote a better understanding of soil microbial community composition and function, which we can exploit to enhance soil quality, health, and fertility.

10.
Appl Environ Microbiol ; 88(17): e0078322, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35943262

RESUMEN

Chemolitho-autotrophic microorganisms like the nitrite-oxidizing Nitrobacter winogradskyi create an environment for heterotrophic microorganisms that profit from the production of organic compounds. It was hypothesized that the assembly of a community of heterotrophic microorganisms around N. winogradskyi depends on the ecosystem from which the heterotrophs are picked. To test this hypothesis, pure cultures of N. winogradskyi were grown in continuously nitrite-fed bioreactors in a mineral medium free of added organic carbon that had been inoculated with diluted sewage sludge or with a suspension from a grassland soil. Samples for chemical and 16S rRNA gene amplicon analyses were taken after each volume change in the bioreactor. At the end of the enrichment runs, samples for shotgun metagenomics were also collected. Already after two volume changes, the transformations in community structure became less dynamic. The enrichment of heterotrophs from both sewage and soil was highly stochastic and yielded different dominant genera in most of the enrichment runs that were independent of the origin of the inoculum. Hence, the hypothesis had to be refuted. Notwithstanding the large variation in taxonomic community structure among the enrichments, the functional compositions of the communities were statistically not different between soil- and sludge-based enrichments. IMPORTANCE In the process of aerobic nitrification, nitrite-oxidizing bacteria together with ammonia-oxidizing microorganisms convert mineral nitrogen from its most reduced appearance, i.e., ammonium, into its most oxidized form, i.e., nitrate. Because the form of mineral nitrogen has large environmental implications, nitrite-oxidizing bacteria such as Nitrobacter winogradskyi play a central role in the global biogeochemical nitrogen cycle. In addition to this central role, the autotrophic nitrite-oxidizing bacteria also play a fundamental role in the global carbon cycle. They form the basis of heterotrophic food webs, in which the assimilated carbon is recycled. Little is known about the heterotrophic microorganisms that participate in these food webs, let alone their assembly in different ecosystems. This study showed that the assembly of microbial food webs by N. winogradskyi was a highly stochastic process and independent of the origin of the heterotrophic microorganisms, but the functional characteristics of the different food webs were similar.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Bacterias/genética , Reactores Biológicos/microbiología , Carbono , Pradera , Nitrificación , Nitritos , Nitrobacter/genética , Nitrógeno , Oxidación-Reducción , ARN Ribosómico 16S/genética , Aguas del Alcantarillado/microbiología , Suelo
11.
Microorganisms ; 10(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35744611

RESUMEN

The increase in sequencing capacity has amplified the number of taxonomically unclassified sequences in most databases. The classification of such sequences demands phylogenetic tree construction and comparison to currently classified sequences, a process that demands the processing of large amounts of data and use of several different software. Here, we present PhyloFunDB, a pipeline for extracting, processing, and inferring phylogenetic trees from specific functional genes. The goal of our work is to decrease processing time and facilitate the grouping of sequences that can be used for improved taxonomic classification of functional gene datasets.

12.
Sci Total Environ ; 842: 156706, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724776

RESUMEN

The rhizosphere-associated microbiome impacts plant performance and tolerance to abiotic and biotic stresses. Despite increasing recognition of the enormous functional role of the rhizomicrobiome on the survival of wild plant species growing under harsh environmental conditions, such as nutrient, water, temperature, and pathogen stresses, the utilization of the rhizosphere microbial community in domesticated rice production systems has been limited. Better insight into how this role of the rhizomicrobiome for the performance and survival of wild plants has been changed during domestication and development of present domesticated crops, may help to assess the potential of the rhizomicrobial community to improve the sustainable production of these crops. Here, we review the current knowledge of the effect of domestication on the microbial rhizosphere community of rice and other crops by comparing its diversity, structure, and function in wild versus domesticated species. We also examine the existing information on the impact of the plant on their physico-chemical environment. We propose that a holobiont approach should be explored in future studies by combining detailed analysis of the dynamics of the physicochemical microenvironment surrounding roots to systematically investigate the microenvironment-plant-rhizomicrobe interactions during rice domestication, and suggest focusing on the use of beneficial microbes (arbuscular mycorrhizal fungi and Nitrogen fixers), denitrifiers and methane consumers to improve the sustainable production of rice.


Asunto(s)
Microbiota , Micorrizas , Oryza , Producción de Cultivos , Productos Agrícolas/microbiología , Domesticación , Grano Comestible , Oryza/microbiología , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo
13.
Environ Microbiol ; 24(8): 3625-3639, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35229433

RESUMEN

Dead wood quantity and quality is important for forest biodiversity, by determining wood-inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e. bark, outer- and inner wood) of 14 common temperate tree species. Fresh logs were incubated in a common garden experiment in a forest site in the Netherlands. After 1 and 4 years of decay, the fungal composition of different compartments was assessed using Internal Transcribed Spacer amplicon sequencing. We found that fungal alpha diversity differed significantly across tree species and stem compartments, with bark showing significantly higher fungal diversity than wood. Gymnosperms and Angiosperms hold different fungal communities, and distinct fungi were found between inner wood and other compartments. Stem traits showed significant afterlife effects on fungal communities; traits associated with accessibility (e.g. conduit diameter), stem chemistry (e.g. C, N, lignin) and physical defence (e.g. density) were important factors shaping fungal community structure in decaying stems. Overall, stem traits vary substantially across stem compartments and tree species, thus regulating fungal communities and the long-term carbon dynamics of dead trees.


Asunto(s)
Micobioma , Árboles , Biodiversidad , Bosques , Hongos/genética , Micobioma/genética , Árboles/microbiología , Madera/microbiología
14.
mSystems ; 7(2): e0104721, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35229646

RESUMEN

Soil microbiota plays fundamental roles in maintaining ecosystem functions and services, including biogeochemical processes and plant productivity. Despite the ubiquity of soil microorganisms from the topsoil to deeper layers, their vertical distribution and contribution to element cycling in subsoils remain poorly understood. Here, nine soil profiles (0 to 135 cm) were collected at the local scale (within 300 km) from two canonical paddy soil types (Fe-accumuli and Hapli stagnic anthrosols), representing redoximorphic and oxidative soil types, respectively. Variations with depth in edaphic characteristics and soil bacterial and diazotrophic community assemblies and their associations with element cycling were explored. The results revealed that nitrogen and iron status were the most distinguishing edaphic characteristics of the two soil types throughout the soil profile. The acidic Fe-accumuli stagnic anthrosols were characterized by lower concentrations of free iron oxides and total iron in topsoil and ammonia in deeper layers compared with the Hapli stagnic anthrosols. The bacterial and diazotrophic community assemblies were mainly shaped by soil depth, followed by soil type. Random forest analysis revealed that nitrogen and iron cycling were strongly correlated in Fe-accumuli stagnic anthrosol, whereas in Hapli soil, available sulfur was the most important variable predicting both nitrogen and iron cycling. The distinctive biogeochemical processes could be explained by the differences in enrichment of microbial taxa between the two soil types. The main discriminant clades were the iron-oxidizing denitrifier Rhodanobacter, Actinobacteria, and diazotrophic taxa (iron-reducing Geobacter, Nitrospirillum, and Burkholderia) in Fe-accumuli stagnic anthrosol and the sulfur-reducing diazotroph Desulfobacca in Hapli stagnic anthrosol. IMPORTANCE Rice paddy ecosystems support nearly half of the global population and harbor remarkably diverse microbiomes and functions in a variety of soil types. Diazotrophs provide significant bioavailable nitrogen in paddy soil, priming nitrogen transformation and other biogeochemical processes. This study provides a novel perspective on the vertical distribution of bacterial and diazotrophic communities in two hydragric anthrosols. Microbiome analysis revealed divergent biogeochemical processes in the two paddy soil types, with a dominance of nitrogen-iron cycling processes in Fe-accumuli stagnic anthrosol and sulfur-nitrogen-iron coupling in Hapli stagnic anthrosol. This study advances our understanding of the multiple significant roles played by soil microorganisms, especially diazotrophs, in biogeochemical element cycles, which have important ecological and biogeochemical ramifications.


Asunto(s)
Microbiota , Suelo , Suelo/química , Bacterias , Hierro , Nitrógeno
15.
FEMS Microbiol Ecol ; 98(2)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35137050

RESUMEN

Strigolactones are endogenous plant hormones regulating plant development and are exuded into the rhizosphere when plants experience nutrient deficiency. There, they promote the mutualistic association of plants with arbuscular mycorrhizal fungi that help the plant with the uptake of nutrients from the soil. This shows that plants actively establish-through the exudation of strigolactones-mutualistic interactions with microbes to overcome inadequate nutrition. The signaling function of strigolactones could possibly extend to other microbial partners, but the effect of strigolactones on the global root and rhizosphere microbiome remains poorly understood. Therefore, we analyzed the bacterial and fungal microbial communities of 16 rice genotypes differing in their root strigolactone exudation. Using multivariate analyses, distinctive differences in the microbiome composition were uncovered depending on strigolactone exudation. Moreover, the results of regression modeling showed that structural differences in the exuded strigolactones affected different sets of microbes. In particular, orobanchol was linked to the relative abundance of Burkholderia-Caballeronia-Paraburkholderia and Acidobacteria that potentially solubilize phosphate, while 4-deoxyorobanchol was associated with the genera Dyella and Umbelopsis. With this research, we provide new insight into the role of strigolactones in the interplay between plants and microbes in the rhizosphere.


Asunto(s)
Microbiota , Micorrizas , Oryza , Lactonas/análisis , Lactonas/química , Lactonas/farmacología , Raíces de Plantas/química , Rizosfera , Simbiosis
16.
Plant Dis ; 106(2): 654-660, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34491099

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum is a distributed and worldwide soilborne disease. The application of biocontrol microbes or agricultural chemicals has been widely used to manage tomato bacterial wilt. However, whether and how agricultural chemicals affect the antagonistic ability of biocontrol microbes is still unknown. Here, we combined potassium phosphite (K-Phite), an environmentally friendly agricultural chemical, and the biocontrol agent Bacillus amyloliquefaciens QPF8 (strain F8) to manage tomato bacterial wilt disease. First, K-Phite at a concentration of 0.05% (wt/vol) could significantly inhibit the growth of R. solanacearum. Second, 0.05% K-Phite enhanced the antagonistic capability of B. amyloliquefaciens F8. Third, the greenhouse soil experiments showed that the control efficiency for tomato bacterial wilt in the combined treatment was significantly higher than that of the application of B. amyloliquefaciens F8 or K-Phite alone. Overall, our results highlighted a novel strategy for the control of tomato bacterial wilt disease via application and revealed a new integrated pattern depending on the enhancement of the antagonistic capability of biocontrol microbes by K-Phite.


Asunto(s)
Bacillus amyloliquefaciens , Agentes de Control Biológico , Enfermedades de las Plantas , Compuestos de Potasio , Ralstonia solanacearum , Solanum lycopersicum , Bacillus amyloliquefaciens/fisiología , Solanum lycopersicum/microbiología , Fosfitos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Ralstonia solanacearum/patogenicidad
17.
Sci Total Environ ; 803: 150131, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34788940

RESUMEN

Microbial communities from rhizosphere (rhizomicrobiomes) have been significantly impacted by domestication as evidenced by a comparison of the rhizomicrobiomes of wild and related cultivated rice accessions. While there have been many published studies focusing on the structure of the rhizomicrobiome, studies comparing the functional traits of the microbial communities in the rhizospheres of wild rice and cultivated rice accessions are not yet available. In this study, we used metagenomic data from experimental rice plots to analyze the potential functional traits of the microbial communities in the rhizospheres of wild rice accessions originated from Africa and Asia in comparison with their related cultivated rice accessions. The functional potential of rhizosphere microbial communities involved in alanine, aspartate and glutamate metabolism, methane metabolism, carbon fixation pathways, citrate cycle (TCA cycle), pyruvate metabolism and lipopolysaccharide biosynthesis pathways were found to be enriched in the rhizomicrobiomes of wild rice accessions. Notably, methane metabolism in the rhizomicrobiomes of wild and cultivated rice accessions clearly differed. Key enzymes involved in methane production and utilization were overrepresented in the rhizomicrobiome samples obtained from wild rice accessions, suggesting that the rhizomicrobiomes of wild rice maintain a different ecological balance for methane production and utilization compared with those of the related cultivated rice accessions. A novel assessment of the impact of rice domestication on the primary metabolic pathways associated with microbial taxa in the rhizomicrobiomes was performed. Results indicated a strong impact of rice domestication on methane metabolism; a process that represents a critical function of the rhizosphere microbial community of rice. The findings of this study provide important information for future breeding of rice varieties with reduced methane emission during cultivation for sustainable agriculture.


Asunto(s)
Oryza , Domesticación , Metano , Oryza/genética , Fitomejoramiento , Rizosfera
18.
Sci Total Environ ; 800: 149493, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426366

RESUMEN

The development and productivity of plants are governed by their genetic background, nutrient input, and the microbial communities they host, i.e. the holobiont. Accordingly, engineering beneficial root microbiomes has emerged as a novel and sustainable approach to crop production with reduced nutrient input. Here, we tested the effects of six bacterial strains isolated from sugarcane stalks on sugarcane growth and physiology as well as the dynamics of prokaryote community assembly in the rhizosphere and root endosphere under two N fertilization regimes. All six strains, Paraburkholderia caribensis IAC/BECa 88, Kosakonia oryzae IAC/BECa 90, Kosakonia radicincitans IAC/BECa 95, Paraburkholderia tropica IAC/BECa 135, Pseudomonas fluorescens IAC/BECa 141 and Herbaspirillum frisingense IAC/BECa 152, increased in shoot and root dry mass, and influenced the concentration and accumulation of important macro- and micronutrients. However, N input reduced the impact of inoculation by shifting the sugarcane microbiome (rhizosphere and root endosphere) and weakening the co-dependence between soil microbes and sugarcane biomass and nutrients. The results show that these beneficial microbes improved plant nutrient uptake conditioned to a reduced N nutrient input. Therefore, reduced fertilization is not only desirable consequence of bacterial inoculation but essential for higher impact of these beneficial bacteria on the sugarcane microbiome.


Asunto(s)
Saccharum , Bacterias , Burkholderiaceae , Enterobacteriaceae , Herbaspirillum , Nitrógeno , Raíces de Plantas , Rizosfera , Microbiología del Suelo
19.
Environ Microbiome ; 16(1): 4, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33902741

RESUMEN

BACKGROUND: The soil microbiome drives soil ecosystem function, and soil microbial functionality is directly linked to interactions between microbes and the soil environment. However, the context-dependent interactions in the soil microbiome remain largely unknown. RESULTS: Using latent variable models (LVMs), we disentangle the biotic and abiotic interactions of soil bacteria, fungi and environmental factors using the Qinghai-Tibetan Plateau soil ecosystem as a model. Our results show that soil bacteria and fungi not only interact with each other but also shift from competition to facilitation or vice versa depending on environmental variation; that is, the nature of their interactions is context-dependent. CONCLUSIONS: Overall, elevation is the environmental gradient that most promotes facilitative interactions among microbes but is not a major driver of soil microbial community composition, as evidenced by variance partitioning. The larger the tolerance of a microbe to a specific environmental gradient, the lesser likely it is to interact with other soil microbes, which suggests that facilitation does not necessarily lead to niche expansion.

20.
Front Microbiol ; 12: 610823, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613482

RESUMEN

The rhizosphere fungal community affects the ability of crops to acquire nutrients and their susceptibility to pathogen invasion. However, the effects of rice domestication on the diversity and interactions of rhizosphere fungal community still remain largely unknown. Here, internal transcribed spacer amplicon sequencing was used to systematically analyze the structure of rhizosphere fungal communities of wild and domesticated rice. The results showed that domestication increased the alpha diversity indices of the rice rhizosphere fungal community. The changes of alpha diversity index may be associated with the enrichment of Acremonium, Lecythophora, and other specific rare taxa in the rhizosphere of domesticated rice. The co-occurrence network showed that the complexity of wild rice rhizosphere fungal community was higher than that of the domesticated rice rhizosphere fungal community. Arbuscular mycorrhizal fungi (AMF) and soilborne fungi were positively and negatively correlated with more fungi in the wild rice rhizosphere, respectively. For restructuring the rhizomicrobial community of domesticated crops, we hypothesize that microbes that hold positive connections with AMF and negative connections with soilborne fungi can be used as potential sources for bio-inoculation. Our findings provide a scientific basis for reshaping the structure of rhizomicrobial community and furthermore create potential for novel intelligent and sustainable agricultural solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA