Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Cancer Med ; 12(8): 9247-9259, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36734317

RESUMEN

BACKGROUND: Glucocorticoids are crucial components of the treatment of leukemia and lymphoma. High doses can lead to suppression of the hypothalamic-pituitary-adrenal (HPA) axis and be causative for an impaired stress response during infection. This study aims to evaluate the cortisol response in pediatric oncologic patients during febrile episodes. METHODS: Totally, 75 children and adolescents (5 months-18 years) with fever during chemotherapy were consecutively enrolled in this study. In total, 47 patients received glucocorticoids as part of their treatment. Random serum cortisol and adrenocorticotropic hormone (ACTH) were analyzed in every patient. A low cortisol response (LCR) was defined as a cortisol level < 14.6 µg/dL. RESULTS: In total, 52 (69%) patients had a cortisol level < 14.6 µg/dL during fever. There was no significant difference between patients who received glucocorticoids and those who did not. Significantly lower cortisol levels were measured ≤7 days after last glucocorticoid intake compared to later time points. Nearly all patients treated with dexamethasone or prophylactic posaconazole demonstrated a LCR under stress (fever). CONCLUSION: The incidence of an impaired HPA axis in pediatric cancer patients might be underestimated since 69% of the children in our study had a LCR during fever. Intake of dexamethasone, posaconazole and a time period of ≤7 days from the last glucocorticoid intake were additional risk factors for an LCR. However, we could not confirm that patients with a LCR fared worse than patients with a high cortisol response (HCR). Therefore, a different cortisol threshold may be necessary for defining an impaired HPA axis in febrile oncologic patients without concomitant symptoms of AI.


Asunto(s)
Hidrocortisona , Neoplasias , Adolescente , Humanos , Niño , Glucocorticoides/efectos adversos , Dexametasona/efectos adversos , Sistema Hipotálamo-Hipofisario/fisiología , Estudios Prospectivos , Sistema Hipófiso-Suprarrenal , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico
2.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34083764

RESUMEN

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias Pancreáticas , Receptores CXCR6/metabolismo , Linfocitos T , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Mesotelina , Ratones , Neoplasias Pancreáticas/terapia , Receptores de Quimiocina/genética
3.
Clin Cancer Res ; 25(19): 5890-5900, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31285373

RESUMEN

PURPOSE: Genetically engineered T cells are powerful anticancer treatments but are limited by safety and specificity issues. We herein describe an MHC-unrestricted modular platform combining autologous T cells, transduced with a targetable synthetic agonistic receptor (SAR), with bispecific antibodies (BiAb) that specifically recruit and activate T cells for tumor killing. EXPERIMENTAL DESIGN: BiAbs of different formats were generated by recombinant expression. T cells were retrovirally transduced with SARs. T-cell activation, proliferation, differentiation, and T-cell-induced lysis were characterized in three murine and human tumor models in vitro and in vivo. RESULTS: Murine T cells transduced with SAR composed of an extracellular domain EGFRvIII fused to CD28 and CD3ζ signaling domains could be specifically recruited toward murine tumor cells expressing EpCAM by anti-EGFRvIII × anti-EpCAM BiAb. BiAb induced selective antigen-dependent activation, proliferation of SAR T cells, and redirected tumor cell lysis. Selectivity was dependent on the monovalency of the antibody for EGFRvIII. We identified FAS ligand as a major mediator of killing utilized by the T cells. Similarly, human SAR T cells could be specifically redirected toward mesothelin-expressing human pancreatic cancer cells. In vivo, treatment with SAR T cells and BiAb mediated antitumoral activity in three human pancreatic cancer cell xenograft models. Importantly, SAR activity, unlike CAR activity, was reversible in vitro and in vivo. CONCLUSIONS: We describe a novel ACT platform with antitumor activity in murine and human tumor models with a distinct mode of action that combines adoptive T-cell therapy with bispecific antibodies.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Antígenos CD28/inmunología , Complejo CD3/inmunología , Receptores ErbB/inmunología , Inmunoterapia Adoptiva/métodos , Neoplasias Pancreáticas/terapia , Linfocitos T/inmunología , Animales , Anticuerpos Biespecíficos/genética , Molécula de Adhesión Celular Epitelial/inmunología , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Mesotelina , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Neoplasias Pancreáticas/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA