RESUMEN
Human papillomavirus (HPV) is a major cause of cervical cancer. As the natural history of HPV-associated cervical lesions is HPV genotype-dependent, it is important to understand the characteristics of these genotypes and to manage them accordingly. Among high-risk HPVs, HPV16 and 18 are particularly aggressive, together accounting for 70% of HPV genotypes detected in cervical cancer. Other than HPV16 and 18, HPV31, 33, 35, 45, 52, and 58 are also at a high risk of progression to cervical intraepithelial neoplasia (CIN)3 or higher. Recent studies have shown that the natural history of HPV16, 18, 52, and 58, which are frequently detected in Japan, depends on the HPV genotype. For example, HPV16 tends to progress in a stepwise fashion from CIN1 to CIN3, while HPV52 and 58 are more likely to persist in the CIN1 to CIN2 state. Among the high-risk HPVs, HPV18 has some peculiar characteristics different from those of other high-risk HPV types; the detection rate in precancerous lesions is much lower than those of other high-risk HPVs, and it is frequently detected in highly malignant adenocarcinoma and small cell carcinoma. Recent findings demonstrate that HPV18 may be characterized by latent infection and carcinogenesis in stem cell-like cells. In this context, this review outlines the natural history of HPV-infected cervical lesions and the characteristics of each HPV genotype.
Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/virología , Infecciones por Papillomavirus/virología , Displasia del Cuello del Útero/virología , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Genotipo , Virus del Papiloma HumanoRESUMEN
Histone modification, a major epigenetic mechanism regulating gene expression through chromatin remodeling, introduces dynamic changes in chromatin architecture. Protein arginine methyltransferase 6 (PRMT6) is overexpressed in various types of cancer, including prostate, lung and endometrial cancer (EC). Epigenome regulates the expression of endogenous retrovirus (ERV), which activates interferon signaling related to cancer. The antitumor effects of PRMT6 inhibition and the role of PRMT6 in EC were investigated, using epigenome multiomics analysis, including an assay for chromatin immunoprecipitation sequencing (ChIPseq) and RNA sequencing (RNAseq). The expression of PRMT6 in EC was analyzed using reverse transcriptionquantitative polymerase chain reaction (RTqPCR) and immunohistochemistry (IHC). The prognostic impact of PRMT6 expression was evaluated using IHC. The effects of PRMT6knockdown (KD) were investigated using cell viability and apoptosis assays, as well as its effects on the epigenome, using ChIPseq of H3K27ac antibodies and RNAseq. Finally, the downstream targets identified by multiomics analysis were evaluated. PRMT6 was overexpressed in EC and associated with a poor prognosis. PRMT6KD induced histone hypomethylation, while suppressing cell growth and apoptosis. ChIPseq revealed that PRMT6 regulated genomic regions related to interferons and apoptosis through histone modifications. The RNAseq data demonstrated altered interferonrelated pathways and increased expression of tumor suppressor genes, including NK6 homeobox 1 and phosphoinositide3kinase regulatory subunit 1, following PRMT6KD. RTqPCR revealed that eight ERV genes which activated interferon signaling were upregulated by PRMT6KD. The data of the present study suggested that PRMT6 inhibition induced apoptosis through interferon signaling activated by ERV. PRMT6 regulated tumor suppressor genes and may be a novel therapeutic target, to the best of our knowledge, in EC.
Asunto(s)
Neoplasias Endometriales , Histonas , Masculino , Femenino , Humanos , Histonas/metabolismo , Proteínas Nucleares/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Código de Histonas , Neoplasias Endometriales/genética , Apoptosis , InterferonesRESUMEN
Human papillomavirus 18 (HPV18) is a highly malignant HPV genotype among high-risk HPVs, characterized by the difficulty of detecting it in precancerous lesions and its high prevalence in adenocarcinomas. The cellular targets and molecular mechanisms underlying its infection remain unclear. In this study, we aimed to identify the cells targeted by HPV18 and elucidate the molecular mechanisms underlying HPV18 replication. Initially, we established a lentiviral vector (HPV18LCR-GFP vector) containing the HPV18 long control region promoter located upstream of EGFP. Subsequently, HPV18LCR-GFP vectors were transduced into patient-derived squamocolumnar junction organoids, and the presence of GFP-positive cells was evaluated. Single-cell RNA sequencing of GFP-positive and GFP-negative cells was conducted. Differentially expressed gene analysis revealed that 169 and 484 genes were significantly upregulated in GFP-positive and GFP-negative cells, respectively. Pathway analysis showed that pathways associated with cell cycle and viral carcinogenesis were upregulated in GFP-positive cells, whereas keratinization and mitophagy/autophagy-related pathways were upregulated in GFP-negative cells. siRNA-mediated luciferase reporter assay and HPV18 genome replication assay validated that, among the upregulated genes, ADNP, FHL2, and NPM3 were significantly associated with the activation of the HPV18 early promoter and maintenance of the HPV18 genome. Among them, NPM3 showed substantially higher expression in HPV-related cervical adenocarcinomas than in squamous cell carcinomas, and NPM3 knockdown of HPV18-infected cells downregulated stem cell-related genes. Our new experimental model allows us to identify novel genes involved in HPV18 early promoter activities. These molecules might serve as therapeutic targets in HPV18-infected cervical lesions.
Asunto(s)
Adenocarcinoma , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Papillomavirus Humano 18/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Adenocarcinoma/genética , Organoides/patologíaRESUMEN
Approximately 95% of cervical cancer are caused by human papillomavirus (HPV) infection. Although it is estimated that HPV-associated cervical cancer will decrease with the widespread use of HPV vaccine, it may take time for HPV-associated cervical cancer to be eliminated. For the appropriate management of HPV-associated cervical cancer, it is important to understand the detailed mechanisms of cervical cancer development. First, the cellular origin of most cervical cancers is thought to be cells in the squamocolumnar junction (SCJ) of the uterine cervix. Therefore, it is important to understand the characteristics of SCJ for cervical cancer screening and treatment. Second, cervical cancer is caused by high risk HPV (HR-HPV) infection, however, the manner of progression to cervical cancer differs depending on the type of HR-HPV: HPV16 is characterized by a stepwise carcinogenesis, HPV18 is difficult to detect in precancerous lesions, and HPV52, 58 tends to remain in the state of cervical intraepithelial neoplasia (CIN). Third, in addition to the type of HPV, the involvement of the human immune response is also important in the progression and regression of cervical cancer. In this review, we demonstrate the carcinogenesis mechanism of HPV-associated cervical cancer, management of CIN, and the current treatment of CIN and cervical cancer.
Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/patología , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Detección Precoz del Cáncer , Displasia del Cuello del Útero/patología , Papillomaviridae/genética , Carcinogénesis , GenotipoRESUMEN
BACKGROUND: Small cell carcinoma of the uterine cervix (SCCC) is a rare and highly malignant human papillomavirus (HPV)-associated cancer in which human genes related to the integration site can serve as a target for precision medicine. The aim of our study was to establish a workflow for precision medicine of HPV-associated cancer using patient-derived organoid. METHODS: Organoid was established from the biopsy of a patient diagnosed with HPV18-positive SCCC. Therapeutic targets were identified by whole exome sequencing (WES) and RNA-seq analysis. Drug sensitivity testing was performed using organoids and organoid-derived mouse xenograft model. RESULTS: WES revealed that both the original tumor and organoid had 19 somatic variants in common, including the KRAS p.G12D pathogenic variant. Meanwhile, RNA-seq revealed that HPV18 was integrated into chromosome 8 at 8q24.21 with increased expression of the proto-oncogene MYC. Drug sensitivity testing revealed that a KRAS pathway inhibitor exerted strong anti-cancer effects on the SCCC organoid compared to a MYC inhibitor, which were also confirmed in the xenograft model. CONCLUSION: In this study, we confirmed two strategies for identifying therapeutic targets of HPV-derived SCCC, WES for identifying pathogenic variants and RNA sequencing for identifying HPV integration sites. Organoid culture is an effective tool for unveiling the oncogenic process of rare tumors and can be a breakthrough for the development of precision medicine for patients with HPV-positive SCCC.
Asunto(s)
Carcinoma de Células Pequeñas , Neoplasias Pulmonares , Infecciones por Papillomavirus , Carcinoma Pulmonar de Células Pequeñas , Neoplasias del Cuello Uterino , Femenino , Humanos , Animales , Ratones , Carcinoma de Células Pequeñas/tratamiento farmacológico , Carcinoma de Células Pequeñas/genética , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Papillomavirus Humano 18/genética , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/patología , Medicina de Precisión , Proteínas Proto-Oncogénicas p21(ras)/genéticaRESUMEN
The cellular origins of cervical cancer and the histological differentiation of human papillomavirus (HPV)-infected cells remain unexplained. To gain new insights into the carcinogenesis and histological differentiation of HPV-associated cervical cancer, we focused on cervical cancer with mixed histological types. We conducted genomic and transcriptomic analyses of cervical cancers with mixed histological types. The commonality of the cellular origins of these cancers was inferred using phylogenetic analysis and by assessing the HPV integration sites. Carcinogenesis was estimated by analyzing human gene expression profiles in different histological types. Among 42 cervical cancers with known HPV types, mixed histological types were detected in four cases, and three of them were HPV18-positive. Phylogenetic analysis of these three cases revealed that the different histological types had a common cell of origin. Moreover, the HPV-derived transcriptome and HPV integration sites were common among different histological types, suggesting that HPV integration could occur before differentiation into each histological type. Human gene expression profiles indicated that HPV18-positive cancer retained immunologically cold components with stem cell properties. Mixed cervical cancer has a common cellular origin among different histological types, and progenitor cells with stem-like properties may be associated with the development of HPV18-positive cervical cancer.
Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/patología , Papillomavirus Humano 18/genética , Filogenia , Papillomaviridae/genética , ADN Viral/genéticaRESUMEN
Homologous recombination (HR) is a major repair pathway of DNA double-strand breaks and is closely related to carcinogenesis. HR deficiency has been established as a therapeutic target. The aim of this study was to elucidate the functions of a novel HR factor, Mediator complex subunit 1 (MED1), and its association with BRCA1. Formation of the MED1/BRCA1 complex was examined by immunoprecipitation and GST-pull down assays. The transcription cofactor role of BRCA1 was evaluated using luciferase assays. The roles of MED1 on DNA damage response and HR were analyzed by immunofluorescence and HR assays. R-loop accumulation was analyzed using immunofluorescence. R-loop-induced DNA damage was analyzed by comet assays. Immunoprecipitation and GST-pull down assays demonstrated that MED1 is a novel binding partner of BRCA1 and binds to the BRCT domain. Luciferase assays showed that MED1 potentiated the transcription ability of BRCT by two-fold. In MED1-depleted cells, recruitment of HR genes, such as RPA and γH2AX, to DNA damage sites was severely impaired. HR assays showed that MED1 knockdown significantly decreased HR activity. R-loop nuclear accumulation and R-loop-induced comet tails were observed in MED1-depleted cells. We conclude that the transcription factor MED1 contributes to the regulation of the HR pathway and R-loop processing.
Asunto(s)
Subunidad 1 del Complejo Mediador , Estructuras R-Loop , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ADN , Reparación del ADN , Recombinación Homóloga , Subunidad 1 del Complejo Mediador/genética , Factores de Transcripción/metabolismoRESUMEN
Histone modification is the key epigenetic mechanism that regulates gene expression. Coactivator-associated arginine methyltransferase 1 (CARM1) is an arginine methyltransferase that catalyzes dimethylation of histone H3 (H3R17) at arginine 17. Lately, it has been suggested that CARM1 is associated with human carcinogenesis, and the CARM1-selective inhibitor, TP-064, has been shown to be a potential therapeutic agent for multiple myeloma. However, the physiological significance of CARM1 in endometrial cancer remains unclear. Therefore, we aimed to explore the role of CARM1 and the effect of TP-064 in endometrial cancer. To this end, we analyzed CARM1 expression in endometrial cancer using quantitative real-time polymerase chain reaction and examined the antitumor mechanism with CARM1 knockdown endometrial cancer cells. Moreover, we evaluated the therapeutic capability of TP-064 in endometrial cancer cells. CARM1 was remarkably overexpressed in 52 endometrial cancer tissues compared to normal endometrial tissues. The growth of CARM1 knockdown endometrial cancer cells was suppressed and CARM1 knockdown induced apoptosis. TP-064 also inhibited endometrial cancer cell growth and declined the number of endometrial cancer cell colonies. These data suggest that CARM1 may be a powerful therapeutic target for endometrial cancer.