Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Microsc Microanal ; 30(2): 208-225, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38578956

RESUMEN

In this article, porous GaN distributed Bragg reflectors (DBRs) were fabricated by epitaxy of undoped/doped multilayers followed by electrochemical etching. We present backscattered electron scanning electron microscopy (BSE-SEM) for sub-surface plan-view imaging, enabling efficient, non-destructive pore morphology characterization. In mesoporous GaN DBRs, BSE-SEM images the same branching pores and Voronoi-like domains as scanning transmission electron microscopy. In microporous GaN DBRs, micrographs were dominated by first porous layer features (45 nm to 108 nm sub-surface) with diffuse second layer (153 nm to 216 nm sub-surface) contributions. The optimum primary electron landing energy (LE) for image contrast and spatial resolution in a Zeiss GeminiSEM 300 was approximately 20 keV. BSE-SEM detects porosity ca. 295 nm sub-surface in an overgrown porous GaN DBR, yielding low contrast that is still first porous layer dominated. Imaging through a ca. 190 nm GaN cap improves contrast. We derived image contrast, spatial resolution, and information depth expectations from semi-empirical expressions. These theoretical studies echo our experiments as image contrast and spatial resolution can improve with higher LE, plateauing towards 30 keV. BSE-SEM is predicted to be dominated by the uppermost porous layer's uppermost region, congruent with experimental analysis. Most pertinently, information depth increases with LE, as observed.

2.
Nanotechnology ; 35(29)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38588661

RESUMEN

Cathodoluminescence and electron backscatter diffraction have been applied to exactly the same grain boundaries (GBs) in a Cu(In,Ga)S2solar absorber in order to investigate the influence of microstructure on the radiative recombination behaviour at the GBs. Two different types of GB with different microstructure were analysed in detail: random high angle grain boundaries (RHAGBs) and Σ3 GBs. We found that the radiative recombination at all RHAGBs was inhibited to some extent, whereas at Σ3 GBs three different observations were made: unchanged, hindered, or promoted radiative recombination. These distinct behaviours may be linked to atomic-scale grain boundary structural differences. The majority of GBs also exhibited a small spectral shift of about ±10 meV relative to the local grain interior (GI) and a few of them showed spectral shifts of up to ±40 meV. Red and blue shifts were observed with roughly equal frequency.

3.
Nanotechnology ; 35(10)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38055988

RESUMEN

Recent advancements in the fabrication of layered halide perovskites and their subsequent modification for optoelectronic applications have ushered in a need for innovative characterisation techniques. In particular, heterostructures containing multiple phases and consequently featuring spatially defined optoelectronic properties are very challenging to study. Here, we adopt an approach centered on cathodoluminescence, complemented by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy analysis. Cathodoluminescence enables assessment of local emission variations by injecting charges with a nanometer-scale electron probe, which we use to investigate emission changes in three different systems: PEA2PbBr4, PEA2PbI4and lateral heterostructures of the two, fabricated via halide substitution. We identify and map different emission bands that can be correlated with local chemical composition and geometry. One emission band is characteristic of bromine-based halide perovskite, while the other originates from iodine-based perovskite. The coexistence of these emissions bands in the halide-substituted sample confirms the formation of lateral heterostructures. To improve the signal quality of the acquired data, we employed multivariate analysis, specifically the non-negative matrix factorization algorithm, on both cathodoluminescence and compositional datasets. The resulting understanding of the halide replacement process and identification of potential synergies in the optical properties will lead to optimised architectures for optoelectronic applications.

4.
Nanoscale Adv ; 5(9): 2610-2620, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37143793

RESUMEN

Understanding the growth mechanisms of III-nitride nanowires is of great importance to realise their full potential. We present a systematic study of silane-assisted GaN nanowire growth on c-sapphire substrates by investigating the surface evolution of the sapphire substrates during the high temperature annealing, nitridation and nucleation steps, and the growth of GaN nanowires. The nucleation step - which transforms the AlN layer formed during the nitridation step to AlGaN - is critical for subsequent silane-assisted GaN nanowire growth. Both Ga-polar and N-polar GaN nanowires were grown with N-polar nanowires growing much faster than the Ga-polar nanowires. On the top surface of the N-polar GaN nanowires protuberance structures were found, which relates to the presence of Ga-polar domains within the nanowires. Detailed morphology studies revealed ring-like features concentric with the protuberance structures, indicating energetically favourable nucleation sites at inversion domain boundaries. Cathodoluminescence studies showed quenching of emission intensity at the protuberance structures, but the impact is limited to the protuberance structure area only and does not extend to the surrounding areas. Hence it should minimally affect the performance of devices whose functions are based on radial heterostructures, suggesting that radial heterostructures remain a promising device structure.

5.
ACS Appl Energy Mater ; 6(7): 3933-3943, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37064411

RESUMEN

2H-Benzotriazol-2-ylethylammonium bromide and iodide and its difluorinated derivatives are synthesized and employed as interlayers for passivation of formamidinium lead triiodide (FAPbI3) solar cells. In combination with PbI2 and PbBr2, these benzotriazole derivatives form two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) as evidenced by their crystal structures and thin film characteristics. When used to passivate n-i-p FAPbI3 solar cells, the power conversion efficiency improves from 20% to close to 22% by enhancing the open-circuit voltage. Quasi-Fermi level splitting experiments and scanning electron microscopy cathodoluminescence hyperspectral imaging reveal that passivation provides a reduced nonradiative recombination at the interface between the perovskite and hole transport layer. Photoluminescence spectroscopy, angle-resolved grazing-incidence wide-angle X-ray scattering, and depth profiling X-ray photoelectron spectroscopy studies of the 2D/three-dimensional (3D) interface between the benzotriazole RPP and FAPbI3 show that a nonuniform layer of 2D perovskites is enough to passivate defects, enhance charge extraction, and decrease nonradiative recombination.

6.
Nano Lett ; 23(4): 1451-1458, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36748796

RESUMEN

Existing barriers to efficient deep ultraviolet (UV) light-emitting diodes (LEDs) may be reduced or overcome by moving away from conventional planar growth and toward three-dimensional nanostructuring. Nanorods have the potential for enhanced doping, reduced dislocation densities, improved light extraction efficiency, and quantum wells free from the quantum-confined Stark effect. Here, we demonstrate a hybrid top-down/bottom-up approach to creating highly uniform AlGaN core-shell nanorods on sapphire repeatable on wafer scales. Our GaN-free design avoids self-absorption of the quantum well emission while preserving electrical functionality. The effective junctions formed by doping of both the n-type cores and p-type caps were studied using nanoprobing experiments, where we find low turn-on voltages, strongly rectifying behaviors and significant electron-beam-induced currents. Time-resolved cathodoluminescence measurements find short carrier liftetimes consistent with reduced polarization fields. Our results show nanostructuring to be a promising route to deep-UV-emitting LEDs, achievable using commercially compatible methods.

7.
Adv Mater ; : e2207301, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36524445

RESUMEN

Bright and efficient deep-red light-emitting diodes (LEDs) are important for applications in medical therapy and biological imaging due to the high penetration of deep-red photons into human tissues. Metal-halide perovskites have potential to achieve bright and efficient electroluminescence due to their favorable optoelectronic properties. However, efficient and bright perovskite-based deep-red LEDs have not been achieved yet, due to either Auger recombination in low-dimensional perovskites or trap-assisted nonradiative recombination in 3D perovskites. Here, a lateral Cs4 PbI6 /FAx Cs1- x PbI3 (0D/3D) heterostructure that can enable efficient deep-red perovskite LEDs at very high brightness is demonstrated. The Cs4 PbI6 can facilitate the growth of low-defect FAx Cs1- x PbI3 , and act as low-refractive-index grids, which can simultaneously reduce nonradiative recombination and enhance light extraction. This device reaches a peak external quantum efficiency of 21.0% at a photon flux of 1.75 × 1021 m-2 s-1 , which is almost two orders of magnitude higher than that of reported high-efficiency deep-red perovskite LEDs. Theses LEDs are suitable for pulse oximeters, showing an error <2% of blood oxygen saturation compared with commercial oximeters.

8.
Microsc Res Tech ; 85(6): 2351-2355, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35118749

RESUMEN

Cross-sectional transmission electron microscopy has been widely used to investigate organic-inorganic hybrid halide perovskite-based optoelectronic devices. Electron-transparent specimens (lamellae) used in such studies are often prepared using focused ion beam (FIB) milling. However, the gallium ions used in FIB milling may severely degrade the structure and composition of halide perovskites in the lamellae, potentially invalidating studies performed on them. In this work, the close relationship between perovskite structure and luminescence is exploited to examine the structural quality of perovskite solar cell lamellae prepared by FIB milling. Through hyperspectral cathodoluminescence (CL) mapping, the perovskite layer was found to remain optically active with a slightly blue-shifted luminescence. This finding indicates that the perovskite structure is largely preserved upon the lamella fabrication process although some surface amorphisation occurred. Further changes in CL due to electron beam irradiation were also recorded, confirming that electron dose management is essential in electron microscopy studies of carefully prepared halide perovskite-based device lamellae. RESEARCH HIGHLIGHTS: Cathodoluminescence is used to study the emission of focused ion beam milled perovskite solar cell lamellae. The perovskite remained optically active with a slightly blue-shifted luminescence, indicating that the perovskite structure is mostly preserved.

9.
Nanoscale ; 14(2): 402-409, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34919106

RESUMEN

Time-resolved cathodoluminescence offers new possibilities for the study of semiconductor nanostructures - including defects. The versatile combination of time, spatial, and spectral resolution of the technique can provide new insights into the physics of carrier recombination at the nanoscale. Here, we used power-dependent cathodoluminescence and temperature-dependent time-resolved cathodoluminescence to study the carrier dynamics at trench defects in InGaN quantum wells - a defect commonly found in III-nitride structures. The measurements show that the emission properties of trench defects closely relate to the depth of the related basal plane stacking fault within the quantum well stack. The study of the variation of carrier decay time with detection energy across the emission spectrum provides strong evidence supporting the hypothesis that strain relaxation of the quantum wells enclosed within the trench promotes efficient radiative recombination even in the presence of an increased indium content. This result shines light on previously reported peculiar emission properties of the defect, and illustrates the use of cathodoluminescence as a powerful adaptable tool for the study of defects in semiconductors.

10.
Research (Wash D C) ; 2020: 9017871, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33623912

RESUMEN

Metal halide perovskite light-emitting diodes (LEDs) have achieved great progress in recent years. However, bright and spectrally stable blue perovskite LED remains a significant challenge. Three-dimensional mixed-halide perovskites have potential to achieve high brightness electroluminescence, but their emission spectra are unstable as a result of halide phase separation. Here, we reveal that there is already heterogeneous distribution of halides in the as-deposited perovskite films, which can trace back to the nonuniform mixture of halides in the precursors. By simply introducing cationic surfactants to improve the homogeneity of the halides in the precursor solution, we can overcome the phase segregation issue and obtain spectrally stable single-phase blue-emitting perovskites. We demonstrate efficient blue perovskite LEDs with high brightness, e.g., luminous efficacy of 4.7, 2.9, and 0.4 lm W-1 and luminance of over 37,000, 9,300, and 1,300 cd m-2 for sky blue, blue, and deep blue with Commission Internationale de l'Eclairage (CIE) coordinates of (0.068, 0.268), (0.091, 0.165), and (0.129, 0.061), respectively, suggesting real promise of perovskites for LED applications.

11.
ACS Appl Mater Interfaces ; 10(39): 33441-33449, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30188116

RESUMEN

Three-dimensional core-shell nanostructures could resolve key problems existing in conventional planar deep UV light-emitting diode (LED) technology due to their high structural quality, high-quality nonpolar growth leading to a reduced quantum-confined Stark effect and their ability to improve light extraction. Currently, a major hurdle to their implementation in UV LEDs is the difficulty of growing such nanostructures from Al xGa1- xN materials with a bottom-up approach. In this paper, we report the successful fabrication of an AlN/Al xGa1- xN/AlN core-shell structure using an original hybrid top-down/bottom-up approach, thus representing a breakthrough in applying core-shell architecture to deep UV emission. Various AlN/Al xGa1- xN/AlN core-shell structures were grown on optimized AlN nanorod arrays. These were created using displacement Talbot lithography (DTL), a two-step dry-wet etching process, and optimized AlN metal organic vapor phase epitaxy regrowth conditions to achieve the facet recovery of straight and smooth AlN nonpolar facets, a necessary requirement for subsequent growth. Cathodoluminescence hyperspectral imaging of the emission characteristics revealed that 229 nm deep UV emission was achieved from the highly uniform array of core-shell AlN/Al xGa1- xN/AlN structures, which represents the shortest wavelength achieved so far with a core-shell architecture. This hybrid top-down/bottom-up approach represents a major advance for the fabrication of deep UV LEDs based on core-shell nanostructures.

12.
Materials (Basel) ; 11(7)2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976880

RESUMEN

As a route to the formation of regular arrays of AlN nanorods, in contrast to other III-V materials, the use of selective area growth via metal organic vapor phase epitaxy (MOVPE) has so far not been successful. Therefore, in this work we report the fabrication of a highly uniform and ordered AlN nanorod scaffold using an alternative hybrid top-down etching and bottom-up regrowth approach. The nanorods are created across a full 2-inch AlN template by combining Displacement Talbot Lithography and lift-off to create a Ni nanodot mask, followed by chlorine-based dry etching. Additional KOH-based wet etching is used to tune the morphology and the diameter of the nanorods. The resulting smooth and straight morphology of the nanorods after the two-step dry-wet etching process is used as a template to recover the AlN facets of the nanorods via MOVPE regrowth. The facet recovery is performed for various growth times to investigate the growth mechanism and the change in morphology of the AlN nanorods. Structural characterization highlights, first, an efficient dislocation filtering resulting from the ~130 nm diameter nanorods achieved after the two-step dry-wet etching process, and second, a dislocation bending induced by the AlN facet regrowth. A strong AlN near band edge emission is observed from the nanorods both before and after regrowth. The achievement of a highly uniform and organized faceted AlN nanorod scaffold having smooth and straight non-polar facets and improved structural and optical quality is a major stepping stone toward the fabrication of deep UV core-shell-based AlN or AlxGa1-xN templates.

13.
Sci Rep ; 8(1): 1742, 2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-29379097

RESUMEN

Multiple luminescence peaks emitted by a single InGaN/GaN quantum-well(QW) nanorod, extending from the blue to the red, were analysed by a combination of electron microscope based imaging techniques. Utilizing the capability of cathodoluminescence hyperspectral imaging it was possible to investigate spatial variations in the luminescence properties on a nanoscale. The high optical quality of a single GaN nanorod was demonstrated, evidenced by a narrow band-edge peak and the absence of any luminescence associated with the yellow defect band. Additionally two spatially confined broad luminescence bands were observed, consisting of multiple peaks ranging from 395 nm to 480 nm and 490 nm to 650 nm. The lower energy band originates from broad c-plane QWs located at the apex of the nanorod and the higher energy band from the semipolar QWs on the pyramidal nanorod tip. Comparing the experimentally observed peak positions with peak positions obtained from plane wave modelling and 3D finite difference time domain(FDTD) modelling shows modulation of the nanorod luminescence by cavity modes. By studying the influence of these modes we demonstrate that this can be exploited as an additional parameter in engineering the emission profile of LEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA