Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(51): 36392-36402, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38099256

RESUMEN

Organoselenium compounds have long been fascinated researchers owing to their wide range of applications, such as in anticancer, in catalysis, and as molecular precursors for metal selenides. In this view, herein, the one-pot synthesis of dimethyl substituted and unsubstituted dipyrazinyl monoselenides, [(2-pyz)2Se] and [(2,5-Me2-3-pyz)2Se], and the corresponding dipyrazinyl disenides, [(2-pyzSe)2] and [(2,5-Me2-3-pyzSe)2], is demonstrated by the reduction of selenium metal using sodium borohydride at room temperature and a subsequent alkylation using the corresponding pyrazinyl halide in ethanol. All the diselenides and monoselenides were characterized using IR, UV-vis, photoluminescence, and NMR (1H, 13C{1H}, and 77Se{1H}) spectroscopy. The molecular structures of the diselenides and monoselenides were unambiguously determined by single-crystal X-ray diffraction (SC-XRD). The optical properties, including absorption, excitation, emission, and quantum yield, of these organoselenium compounds were examined. Additionally, DFT calculations were performed to determine the HOMO and LUMO orbitals, band gap, and oscillator strength of these ligands.

2.
Inorg Chem ; 62(23): 8823-8834, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37227699

RESUMEN

Copper tellurides have garnered substantial interest for their applicability as an electrocatalyst for water splitting, battery anodes and photodetectors, etc. Moreover, synthesis of phase pure metal tellurides using the multi-source precursor method is challenging. Therefore, a facile synthesis protocol for copper tellurides is anticipated. The current study involves a simplistic single source molecular precursor pathway for the synthesis of orthorhombic-Cu2.86Te2 nano blocks and -Cu31Te24 faceted nanocrystals employing the [Cu{TeC5H3(Me-5)N}]4 cluster in thermolysis and pyrolysis, respectively. The pristine nanostructures were carefully characterized by powder X-ray diffraction, energy-dispersive X-ray spectroscopy, electron microscopic techniques (scanning electron microscopy and transmission electron microscopy), and diffuse reflectance spectroscopy to know the crystal structure, phase purity, elemental composition, distribution of elements, morphology, and optical band gap. These measurements suggests that the reaction conditions fetch nanostructures of different sizes, crystal structures, morphologies, and band gaps. As prepared nanostructures were evaluated for lithium-ion batteries (LIBs) anode material. The cells fabricated with orthorhombic Cu2.86Te2 and orthorhombic Cu31Te24 nanostructures deliver capacities of 68 and 118 mA h/g after 100 cycles. The LIB anode made up of Cu31Te24 faceted nanocrystals exhibited good cyclability and mechanical stability.

3.
Int J Biol Macromol ; 242(Pt 3): 125014, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230445

RESUMEN

Exopolysaccharides (EPS) produced by bacterial species are an important component of bacteria's survival strategy. Synthesis of EPS, principal component of extracellular polymeric substance, occurs through multiple pathways involving multitude of genes. While stress-induced concomitant increase in exoD transcript levels and EPS content have been shown earlier, experimental evidence for direct correlation is lacking. In the present study, role of ExoD in Nostoc sp. strain PCC 7120 was evaluated by generating a recombinant Nostoc strain AnexoD+, wherein the ExoD (Alr2882) protein was constitutively overexpressed. AnexoD+ exhibited higher EPS production, propensity for formation of biofilms and tolerance to Cd stress compared to vector control AnpAM cells. Both Alr2882 and its paralog All1787 exhibited 5 transmembrane domains, with only All1787 predicted to interact with several proteins in polysaccharide synthesis. Phylogenetic analysis of orthologs of these proteins across cyanobacteria indicated that the two paralogs Alr2882 and All1787 and their corresponding orthologs arose divergently during evolution, and could have distinct roles to perform in the biosynthesis of EPS. This study has thrown open the possibility of engineering overproduction of EPS and inducing biofilm formation through genetic manipulation of EPS biosynthesis genes in cyanobacteria, thus building a cost-effective green platform for large scale production of EPS.


Asunto(s)
Nostoc , Nostoc/genética , Nostoc/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Filogenia , Proteínas/metabolismo , Biopelículas , Metales/metabolismo , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo
4.
J Nanosci Nanotechnol ; 6(1): 235-40, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16573102

RESUMEN

Synthesis and characterization of various classical indium xanthate complexes of the type [InCl(3-n)(S2COR)n] (n = 1, 2, or 3; R = Me, Et, Pr(i), and Bu(s)) have been discussed. Crystalline beta-ln2S3 nanoparticles were obtained by the solvent thermolysis of indium tris-alkylxanthates in ethylene glycol at 196 degrees C, and were characterized by elemental analysis, IR, powder XRD, and XPS techniques. TEM results showed that the size of beta-In2S3 nanoparticles depended on the nature of the precursor used. The optical properties of beta-In2S3 nanocrystals have shown quantum confinement of the excitonic transition.


Asunto(s)
Indio/química , Compuestos Organometálicos/química , Polisacáridos Bacterianos/química , Azufre/química , Indicadores y Reactivos , Espectroscopía de Resonancia Magnética , Microscopía Electrónica , Modelos Moleculares , Conformación Molecular , Nanoestructuras/química , Termodinámica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA