RESUMEN
Background/Aims: Well-known risk factors for gallbladder polyps include metabolic syndrome, age, and dyslipidemia. Jeju Island is approximately 80 km from the Korean peninsula and is divided into two administrative regions (Jeju City and Seogwipo City), with Mount Halla intervening in the center. Jeju City has higher employment and birth rates than Seogwipo City. Age and alcohol consumption differ between the two regions, and these factors may affect the prevalence of gallbladder polyps (GBPs). Therefore, we investigated the prevalence of GBPs and compared various factors, including alcohol consumption habits and age, associated with GBPs among residents in the two regions. Methods: This study included 21,734 residents who visited the Health Screening and Promotion Center of Jeju National University Hospital between January 2009 and December 2019. We investigated the prevalence and associated factors of GBPs among residents of Jeju City and Seogwipo City. Results: The prevalence of GBPs in Jeju City and Seogwipo City was 9.8% and 8.9% (p = 0.043), respectively. The mean age and rate of high-risk alcohol intake were higher in Seogwipo City. The mean body mass index and levels of fasting blood glucose, total cholesterol, low-density lipoprotein cholesterol, aspartate aminotransferase, gamma-glutamyl transferase, and alkaline phosphatase were lower in Jeju City. Conclusions: This study demonstrated a significant difference in GBP prevalence between the two regions of Jeju Island. Age and alcohol consumption might contribute to this difference; however, further prospective cohort studies are warranted to confirm our findings.
RESUMEN
Introduction: Anterior cruciate ligament (ACL) injury is frequently accompanied by quadriceps muscle atrophy, a process closely linked to mitochondrial health and mitochondria-specific autophagy. However, the temporal progression of key quadricep atrophy-mediating events following ACL injury remains poorly understood. To advance our understanding, we conducted a longitudinal study to elucidate key parameters in quadriceps autophagy and mitophagy. Methods: Long-Evans rats were euthanized at 7, 14, 28, and 56 days after non-invasive ACL injury that was induced via tibial compression overload; controls were not injured. Vastus lateralis muscle was extracted, and subsequent immunoblotting analysis was conducted using primary antibodies targeting key proteins involved in autophagy and mitophagy cellular processes. Results: Our findings demonstrated dynamic changes in autophagy and mitophagy markers in the quadriceps muscle during the recovery period after ACL injury. The early response to the injury was characterized by the induction of autophagy at 14 days (Beclin1), indicating an initial cellular response to the injury. Subsequently, at 14 days we observed increase in the elongation of autophagosomes (Atg4B), suggesting a potential remodeling process. The autophagosome flux was also augmented between 14- and 28 days (LC3-II/LC3-I ratio and p62). Notably, at 56 days, markers associated with the elimination of damaged mitochondria were elevated (PINK1, Parkin, and VDAC1), indicating a possible ongoing cellular repair and restoration process. Conclusion: These data highlight the complexity of muscle recovery after ACL injury and underscore the overlooked but crucial role of autophagy and mitophagy in promoting the recovery process.
RESUMEN
Objective: To provide a synthesis of randomized controlled trials (RCTs) investigating statin-associated muscle symptoms (SAMS) in adults who underwent exercise training intervention. Patients and Methods: We systematically searched 5 electronic databases for placebo-controlled RCTs through January 31, 2023. We included short-term and long-term exercise interventions that compared the efficacy and safety of exercise+statin vs exercise+placebo in healthy adults and reported SAMS preintervention and postintervention. Publication bias and methodological study quality assessments were performed. Results: Five of 454 potentially qualifying RCTs met the inclusion criteria, all short-term exercise RCTs. Participants were predominantly physically inactive young to middle-aged (M=37.2 y) men (57%), 252 (49%) who were on statin therapy, and 271 (53%) on placebo. Of the 3 RCTs providing qualitative SAMS results, 19 (9%) out of 220 participants reported SAMS on exercise+statin and 10 (4%) out of 234 reported SAMS on exercise+placebo. There was no difference between exercise+statin vs exercise+placebo for maximal oxygen consumption (d=-0.18; 95% CI, -0.37 to 0.00; P=.06) or creatine kinase after short-term exercise (d=0.59; 95% CI, -0.06 to 1.25; P=.08). Participants in the exercise+statin group reduced low-density lipoprotein cholesterol vs exercise+placebo (d=-1.84; 95% CI, -2.28 to -1.39; P<.001). Most of the RCTs exhibited low levels of risk of bias (k=4, 80%) and achieved moderate methodological study quality (75.0%±5.2%). Conclusion: Self-reported SAMs tended to be 5% greater after short-term exercise in statin users compared with placebo, although this difference did not achieve statistical significance. There remains an important need for placebo-controlled RCTs investigating the prevalence of statin-induced SAMS during exercise training.
RESUMEN
OBJECTIVE: The objective of this article is to evaluate near-infrared spectroscopy (NIRS), a non-invasive technique to assess tissue oxygenation and mitochondrial function, as a diagnostic tool for statin-associated muscle symptoms (SAMS). METHODS: We verified SAMS in 39 statin-treated patients (23 women) using a double-blind, placebo-controlled, cross-over protocol. Subjects with suspected SAMS were randomised to simvastatin 20 mg/day or placebo for 8 weeks, followed by a 4-week no treatment period and then assigned to the alternative treatment, either simvastatin or placebo. Tissue oxygenation was measured before and after each statin or placebo treatment using NIRS during handgrip exercise at increasing intensities of maximal voluntary contraction (MVC). RESULTS: 44% (n=17) of patients were confirmed as having SAMS (11 women) because they reported discomfort only during simvastatin treatment. There were no significant differences in percent change in tissue oxygenation in placebo versus statin at all % MVCs in all subjects. The percent change in tissue oxygenation also did not differ significantly between confirmed and unconfirmed SAMS subjects on statin (-2.4% vs -2.4%, respectively) or placebo treatment (-1.1% vs -9%, respectively). The percent change in tissue oxygenation was reduced after placebo therapy in unconfirmed SAMS subjects (-10.2%) (p≤0.01) suggesting potential measurement variability. CONCLUSIONS: NIRS in the forearm cannot differentiate between confirmed and unconfirmed SAMS, but further research is needed to assess the usability of NIRS as a diagnostic tool for SAMS. TRIAL REGISTRATION NUMBER: NCT03653663.
Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Femenino , Humanos , Fuerza de la Mano , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Mitocondrias Musculares , Músculo Esquelético , Simvastatina/efectos adversos , MasculinoRESUMEN
Lifestyle modification including exercise training is often the first line of defense in the treatment of obesity and hypertension (HTN), however, little is known regarding how these potentially compounding disease states impact vasodilatory and hemodynamic responses at baseline and exercise. Therefore, this study sought to compare the impact of obesity on vascular function and hemodynamics at baseline and during handgrip (HG) exercise among individuals with HTN. Non-obese (13M/7F, 56 ± 16 yr, 25 ± 4 kg/m2) and obese (17M/4F, 50 ± 7 yr, 35 ± 4 kg/m2) middle-aged individuals with HTN forwent antihypertensive medication use for ≥2 wk before assessment of vascular function by brachial artery flow-mediated dilation (FMD) and exercise hemodynamics during progressive HG exercise at 15-30-45% maximal voluntary contraction (MVC). FMD was not different between Non-Obese (4.1 ± 1.7%) and Obese (5.2 ± 1.9%, P = 0.11). Systolic blood pressure (SBP) was elevated by â¼15% during the supine baseline and during HG exercise in the obese group. The blood flow response to HG exercise at 30% and 45% MVC was â¼20% greater (P < 0.05) in the obese group but not different after normalizing for the higher, albeit, nonsignificant differences in workloads (MVC: obese: 24 ± 5 kg, non-obese: 21 ± 5 kg, P = 0.11). Vascular conductance and the brachial artery shear-induced vasodilatory response during HG were not different between groups (P > 0.05). Taken together, despite elevated SBP during HG exercise, obesity does not lead to additional impairments in vascular function and peripheral exercising hemodynamics in patients with HTN. Obesity may not be a contraindication when prescribing exercise for the treatment of HTN among middle-aged adults, however, the elevated SBP should be appropriately monitored.NEW & NOTEWORTHY This study examined vascular function and handgrip exercise hemodynamics in obese and nonobese individuals with hypertension. Obesity, when combined with hypertension, was neither associated with additional vascular function impairments at baseline nor peripheral hemodynamics and vasodilation during exercise compared with nonobese hypertension. Interestingly, systolic blood pressure and pulse pressure were greater in the obese group during supine baseline and exercise. These findings should not be ignored and may be particularly important for rehabilitation strategies.
Asunto(s)
Hipertensión , Hipotensión , Adulto , Persona de Mediana Edad , Humanos , Fuerza de la Mano , Hemodinámica , Ejercicio Físico/fisiología , Presión Sanguínea , Obesidad , Vasodilatación/fisiología , Arteria Braquial , Flujo Sanguíneo RegionalRESUMEN
N6-methyladenosine (m6A), a widespread destabilizing mark on mRNA, is non-uniformly distributed across the transcriptome, yet the basis for its selective deposition is unknown. Here, we propose that m6A deposition is not selective. Instead, it is exclusion based: m6A consensus motifs are methylated by default, unless they are within a window of â¼100 nt from a splice junction. A simple model which we extensively validate, relying exclusively on presence of m6A motifs and exon-intron architecture, allows in silico recapitulation of experimentally measured m6A profiles. We provide evidence that exclusion from splice junctions is mediated by the exon junction complex (EJC), potentially via physical occlusion, and that previously observed associations between exon-intron architecture and mRNA decay are mechanistically mediated via m6A. Our findings establish a mechanism coupling nuclear mRNA splicing and packaging with the covalent installation of m6A, in turn controlling cytoplasmic decay.
Asunto(s)
Empalme del ARN , Transcriptoma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Exones/genéticaRESUMEN
During solid-state calcination, with increasing temperature, materials undergo complex phase transitions with heterogeneous solid-state reactions and mass transport. Precise control of the calcination chemistry is therefore crucial for synthesizing state-of-the-art Ni-rich layered oxides (LiNi1-x-y Cox Mny O2 , NRNCM) as cathode materials for lithium-ion batteries. Although the battery performance depends on the chemical heterogeneity during NRNCM calcination, it has not yet been elucidated. Herein, through synchrotron-based X-ray, mass spectrometry microscopy, and structural analyses, it is revealed that the temperature-dependent reaction kinetics, the diffusivity of solid-state lithium sources, and the ambient oxygen control the local chemical compositions of the reaction intermediates within a calcined particle. Additionally, it is found that the variations in the reducing power of the transition metals (i.e., Ni, Co, and Mn) determine the local structures at the nanoscale. The investigation of the reaction mechanism via imaging analysis provides valuable information for tuning the calcination chemistry and developing high-energy/power density lithium-ion batteries.
RESUMEN
The mechanisms underlying muscle dysfunction with Chronic Obstructive Pulmonary Disease (COPD) are poorly understood. Indirect evidence has recently suggested a role of Advanced Glycation End Products (AGEs) and their receptor (RAGE) in the pathophysiology of COPD. Accordingly, this study aimed to examine the redox balance and mitochondrial alterations in the skeletal muscle of a mouse model deficient in the receptor for AGE (RAGE-KO) and wild-type C57BL/6 exposed to cigarette smoke for 8-months using immunoblotting, spectrophotometry, and high-resolution respirometry. Cigarette smoke exposure increased by two-fold 4-HNE levels (P < 0.001), a marker of oxidative stress, and markedly downregulated contractile proteins, mitochondrial respiratory complexes, and uncoupling proteins levels (P < 0.001). Functional alterations with cigarette smoke exposure included a greater reliance on complex-I supported respiration (P < 0.01) and lower relative respiratory capacity for fatty acid (P < 0.05). RAGE knockout resulted in 47% lower 4-HNE protein levels than the corresponding WT control mice exposed to cigarette smoke (P < 0.05), which was partly attributed to increased Complex III protein levels. Independent of cigarette smoke exposure, RAGE KO decreased mitochondrial specific maximal respiration (P < 0.05), resulting in a compensatory increase in mitochondrial content measured by citrate synthase activity (P < 0.001) such that muscle respiratory capacity remained unaltered. Together, these findings suggest that knockout of RAGE protected the skeletal muscle against oxidative damage induced by 8 months of cigarette smoke exposure. In addition, this study supports a role for RAGE in regulating mitochondrial content and function and can thus serve as a potential therapeutic target.
Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Ratones , Animales , Receptor para Productos Finales de Glicación Avanzada , Fumar Cigarrillos/efectos adversos , Ratones Noqueados , Ratones Endogámicos C57BL , Estrés Oxidativo , Mitocondrias/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Productos Finales de Glicación Avanzada/genética , Productos Finales de Glicación Avanzada/metabolismoRESUMEN
The present study aimed to determine the isoform-specific role of the NADPH oxidases (NOX) in the endothelium-mediated vascular dysfunction associated with ageing. Endothelium-dependent [intraluminal flow- and acetylcholine (ACh)-induced] vasodilatation in human skeletal muscle feed arteries (SMFAs) of young (24 ± 1 years, n = 16), middle aged (45 ± 1 years, n = 18) and old (76 ± 2 years, n = 21) subjects was assessed in vitro with and without the inhibition of NOX1 (ML090), NOX2 (gp91) and NOX4 (plumbagin). To identify the role of nitric oxide (NO) bioavailability in these responses, NO synthase blockade (l-NG -monomethyl arginine citrate) was utilized. SMFA NOX1, NOX2 and NOX4 protein expression was determined by western blotting. Age related endothelium-dependent vasodilatory dysfunction was evident in response to flow (young: 69 ± 3; middle aged: 51 ± 3; old: 27 ± 3%, P < 0.05) and ACh (young: 89 ± 2; middle aged: 72 ± 3; old: 45 ± 4%, P < 0.05). NOX1 inhibition had no effect on SMFA vasodilatation, whereas NOX2 inhibition restored flow- and ACh-induced vasodilatation in the middle aged and the old SMFAs (middle aged + gp91: 69 ± 3; 86 ± 3, old + gp91: 65 ± 5; 83 ± 2%, P < 0.05) and NOX4 inhibition tended to restore these vasodilatory responses in these two groups, but neither achieved statistical significance (P ≈ 0.06). l-NG -monomethyl arginine citrate negated the restorative effects of NOX2 and NOX4 blockade. Only NOX2 and NOX4 protein expression was significantly greater in the two older groups and inversely related to vascular function (r = 0.48 to 0.93, P < 0.05). NOX2 and, to a lesser extent, NOX4 appear to play an important, probably NO-mediated, role in age-related endothelial dysfunction. KEY POINTS: The present study aimed to determine the isoform-specific role of the NADPH oxidases (NOX) in the endothelium-mediated vascular dysfunction associated with ageing. Age related endothelium-dependent vasodilatory dysfunction was evident in skeletal muscle feed arteries in response to both flow and acetylcholine. NOX2 inhibition (gp91) restored endothelium-dependent vasodilatation in the middle aged and the old skeletal muscle feed arteries, and NOX4 inhibition (plumbagin) tended to restore these vasodilatory responses in these two groups. Nitric oxide synthase inhibition negated the restorative effects of NOX2 and NOX4 blockade. NOX2 and NOX4 protein expression was significantly greater in the two older groups and inversely related to vascular function. NOX2 and, to a lesser extent, NOX4 appear to play an important, probably nitric oxide-mediated, role in age-related endothelial dysfunction and could be important therapeutic targets to maintain vascular health with ageing.
Asunto(s)
NADPH Oxidasas , Enfermedades Vasculares , Persona de Mediana Edad , Humanos , NADPH Oxidasas/metabolismo , NADPH Oxidasa 4/metabolismo , Óxido Nítrico/metabolismo , Acetilcolina/farmacología , Acetilcolina/metabolismo , Envejecimiento/fisiología , Enfermedades Vasculares/metabolismo , Endotelio Vascular/fisiología , Óxido Nítrico Sintasa/metabolismo , Arginina/metabolismoRESUMEN
AIM: The importance of endothelial cell (EC) autophagy to vascular homeostasis in the context of health and disease is evolving. Earlier, we reported that intact EC autophagy is requisite to maintain shear-stress-induced nitric oxide (NO) generation via glycolysis-dependent purinergic signalling to endothelial NO synthase (eNOS). Here, we illustrate the translational and functional significance of these findings. METHODS AND RESULTS: First, we assessed translational relevance using older male humans and mice that exhibit blunted EC autophagy and impaired arterial function vs. adult controls. Active hyperaemia evoked by rhythmic handgrip exercise-elevated radial artery shear-rate similarly from baseline in adult and older subjects for 60 min. Compared with baseline, indexes of autophagy initiation, p-eNOSS1177 activation, and NO generation, occurred in radial artery ECs obtained from adult but not older volunteers. Regarding mice, indexes of autophagy and p-eNOSS1177 activation were robust in ECs from adult but not older animals that completed 60-min treadmill-running. Furthermore, 20 dyne ⢠cm2 laminar shear stress × 45-min increased autophagic flux, glycolysis, ATP production, and p-eNOSS1177 in primary arterial ECs obtained from adult but not older mice. Concerning functional relevance, we next questioned whether the inability to initiate EC autophagy, glycolysis, and p-eNOSS1177in vitro precipitates arterial dysfunction ex vivo. Compromised intraluminal flow-mediated vasodilation displayed by arteries from older vs. adult mice was recapitulated in vessels from adult mice by (i) NO synthase inhibition; (ii) acute autophagy impairment using 3-methyladenine (3-MA); (iii) EC Atg3 depletion (iecAtg3KO mice); (iv) purinergic 2Y1-receptor (P2Y1-R) blockade; and (v) germline depletion of P2Y1-Rs. Importantly, P2Y1-R activation using 2-methylthio-ADP (2-Me-ADP) improved vasodilatory capacity in arteries from (i) adult mice treated with 3-MA; (ii) adult iecAtg3KO mice; and (iii) older animals with repressed EC autophagy. CONCLUSIONS: Arterial dysfunction concurrent with pharmacological, genetic, and age-associated EC autophagy compromise is improved by activating P2Y1-Rs.
Asunto(s)
Arterias , Fuerza de la Mano , Adulto , Humanos , Masculino , Animales , Ratones , Receptores Purinérgicos P2Y1 , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa , Autofagia , Óxido NítricoRESUMEN
Glycogen storage disease type IX (GSD-IX) constitutes nearly a quarter of all GSDs. This ketotic form of GSD is caused by mutations in phosphorylase kinase (PhK), which is composed of four subunits (α, ß, γ, δ). PhK is required for the activation of the liver isoform of glycogen phosphorylase (PYGL), which generates free glucose-1-phosphate monomers to be used as energy via cleavage of the α -(1,4) glycosidic linkages in glycogen chains. Mutations in any of the PhK subunits can negatively affect the regulatory and catalytic activity of PhK during glycogenolysis. To understand the pathogenesis of GSD-IX-beta, we characterized a newly created PHKB knockout (Phkb−/−) mouse model. In this study, we assessed fasting blood glucose and ketone levels, serum metabolite concentrations, glycogen phosphorylase activity, and gene expression of gluconeogenic genes and fibrotic genes. Phkb−/− mice displayed hepatomegaly with lower fasting blood glucose concentrations. Phkb−/− mice showed partial liver glycogen phosphorylase activity and increased sensitivity to pyruvate, indicative of partial glycogenolytic activity and upregulation of gluconeogenesis. Additionally, gene expression analysis demonstrated increased lipid metabolism in Phkb−/− mice. Gene expression analysis and liver histology in the livers of old Phkb−/− mice (>40 weeks) showed minimal profibrogenic features when analyzed with age-matched wild-type (WT) mice. Collectively, the Phkb−/− mouse recapitulates mild clinical features in patients with GSD-IX-beta. Metabolic and molecular analysis confirmed that Phkb−/− mice were capable of sustaining energy homeostasis during prolonged fasting by using partial glycogenolysis, increased gluconeogenesis, and potentially fatty acid oxidation in the liver.
Asunto(s)
Enfermedad del Almacenamiento de Glucógeno , Glucogenólisis , Fosforilasa Quinasa/metabolismo , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Hígado/metabolismo , Ratones , Fosforilasa Quinasa/genéticaRESUMEN
An exaggerated mean arterial blood pressure (MAP) response to exercise in patients with peripheral artery disease (PAD), likely driven by inflammation and oxidative stress and, perhaps, required to achieve an adequate blood flow response, is well described. However, the blood flow response to exercise in patients with PAD actually remains equivocal. Therefore, eight patients with PAD and eight healthy controls completed 3 min of plantar flexion exercise at both an absolute work rate (WR) (2.7 W, to evaluate blood flow) and a relative intensity (40%WRmax, to evaluate MAP). The exercise-induced change in popliteal artery blood flow (BF, Ultrasound Doppler), MAP (Finapress), and vascular conductance (VC) were quantified. In addition, resting markers of inflammation and oxidative stress were measured in plasma and muscle biopsies. Exercise-induced ΔBF, assessed at 2.7 W, was lower in PAD compared with controls (PAD: 251 ± 150 vs. Controls: 545 ± 187 mL/min, P < 0.001), whereas ΔMAP, assessed at 40%WRmax, was greater for PAD (PAD: 23 ± 14 vs. Controls: 11 ± 6 mmHg, P = 0.028). The exercise-induced ΔVC was lower for PAD during both the absolute WR (PAD: 1.9 ± 1.6 vs. Controls: 4.7 ± 1.9 mL/min/mmHg) and relative intensity exercise (PAD: 1.9 ± 1.8 vs. Controls: 5.0 ± 2.2 mL/min/mmHg) trials (both, P < 0.01). Inflammatory and oxidative stress markers, including plasma interleukin-6 and muscle protein carbonyls, were elevated in PAD (both, P < 0.05), and significantly correlated with the hemodynamic changes during exercise (r = -0.57 to -0.78, P < 0.05). Thus, despite an exaggerated ΔMAP response, patients with PAD exhibit an impaired exercise-induced ΔBF and ΔVC, and both inflammation and oxidative stress likely play a role in this attenuated hemodynamic response.
Asunto(s)
Ejercicio Físico , Inflamación , Estrés Oxidativo , Enfermedad Arterial Periférica , Humanos , Presión Arterial , Inflamación/metabolismo , Interleucina-6/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Enfermedad Arterial Periférica/fisiopatología , Flujo Sanguíneo Regional , HemodinámicaRESUMEN
Exaggerated blood pressure and diminished limb hemodynamics during exercise in patients with hypertension often are not resolved by antihypertensive medications. We hypothesized that, independent of antihypertensive medication status, dietary nitrate supplementation would increase limb blood flow, decrease mean arterial pressure (MAP), and increase limb vascular conductance during exercise in patients with hypertension. Patients with hypertension either abstained from (n = 14, Off-Meds) or continued (n = 12, On-Meds) antihypertensive medications. Within each group, patients consumed (crossover design) nitrate-rich or nitrate-depleted (placebo) beetroot juice for 3 days before performing handgrip (HG) and knee-extensor exercise (KE). Blood flow and MAP were measured using Doppler ultrasound and an automated monitor, respectively. Dietary nitrate increased plasma-[nitrite] Off-Meds and On-Meds. There were no significant effects of dietary nitrate on blood flow, MAP, or vascular conductance during HG in Off-Meds or On-Meds. For KE, dietary nitrate decreased MAP (means ± SD across all 3 exercise intensities, 118 ± 14 vs. 122 ± 14 mmHg, P = 0.024) and increased vascular conductance (26.2 ± 6.1 vs. 24.7 ± 7.0 mL/min/mmHg, P = 0.024), but did not affect blood flow for Off-Meds, with no effects On-Meds. Dietary nitrate-induced changes in blood flow (r = -0.67, P < 0.001), MAP (r = -0.43, P = 0.009), and vascular conductance (r = -0.64, P < 0.001) during KE, but only vascular conductance (r = -0.35, P = 0.039) during HG, were significantly related to the magnitude of placebo values, with no differentiation between groups. Thus, the effects of dietary nitrate on limb hemodynamics and MAP during exercise in patients with hypertension are dependent on the values at baseline, independent of antihypertensive medication status, and dependent on whether exercise was performed by the forearm or quadriceps.NEW & NOTEWORTHY Adverse hemodynamic responses to exercise in patients with hypertension, despite antihypertensive medication, indicate a sustained cardiovascular risk. The efficacy of dietary nitrate to improve limb vascular conductance during exercise was inversely dependent on the magnitude of exercising limb vascular conductance at baseline, rather than antihypertensive medication status. The effects of dietary nitrate on hemodynamics during exercise in patients with hypertension are dependent on the values at baseline and independent of antihypertensive medication status.
Asunto(s)
Suplementos Dietéticos , Hipertensión Esencial , Terapia por Ejercicio , Nitratos , Antihipertensivos , Presión Sanguínea , Estudios Cruzados , Hipertensión Esencial/dietoterapia , Hipertensión Esencial/terapia , Fuerza de la Mano/fisiología , Hemodinámica , Humanos , MúsculosRESUMEN
The exercise pressor reflex (EPR), a neurocirculatory control mechanism, is exaggerated in hypertensive humans and rats. Disease-related abnormalities within the afferent arm of the reflex loop, including mechano- and metabosensitive receptors located at the terminal end of group III/IV muscle afferents, may contribute to the dysfunctional EPR in hypertension. Using control (WKY) and spontaneous hypertensive (SHR) rats, we examined dorsal root ganglion (DRG) gene and protein expression of molecular receptors recognized as significant determinants of the EPR. Twelve lumbar DRGs (6 left, 6 right) were harvested from each of 10 WKY [arterial blood pressure (MAP): 96 ± 9 mmHg] and 10 SHR (MAP: 144 ± 9 mmHg). DRGs from the left side were used for protein expression (Western blotting; normalized to GAPDH), whereas right-side DRGs (i.e., parallel structure) were used to determine mRNA levels (RNA-sequencing, normalized to TPM). Analyses focused on metabosensitive (ASIC3, Bradykinin receptor B2, EP4, P2X3, TRPv1) and mechanosensitive (Piezo1/2) receptors. Although Piezo1 was similar in both groups (P = 0.75), protein expression for all other receptors was significantly higher in SHR compared with WKY. With the exception of a greater Bradykinin-receptor B2 in SHR (P < 0.05), mRNA expression of all other receptors was not different between groups (P > 0.18). The higher protein content of these sensory receptors in SHR indirectly supports the previously proposed hypothesis that the exaggerated EPR in hypertension is, in part, due to disease-related abnormalities within the afferent arm of the reflex loop. The upregulated receptor content, combined with normal mRNA levels, insinuates that posttranscriptional regulation of sensory receptor protein expression might be impaired in hypertension.
Asunto(s)
Ganglios Espinales , Hipertensión , Animales , Presión Sanguínea , Ganglios Espinales/metabolismo , Humanos , Canales Iónicos , Masculino , ARN Mensajero/genética , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Células Receptoras Sensoriales/metabolismoRESUMEN
NEW FINDINGS: What is the central question of this study? Use of the passive leg movement (PLM) test, a non-invasive assessment of microvascular function, is on the rise. However, PLM reliability in men has not been adequately investigated, nor has such reliability data, in men, been compared to the most commonly employed vascular function assessment, flow-mediated vasodilation (FMD). What is the main finding and its importance? PLM is a reliable method to assess vascular function in men, and is comparable to values previously reported for PLM in women, and for FMD. Given the importance of vascular function as a predictor of cardiovascular disease risk, these data support the utility of PLM as a clinically relevant measurement. ABSTRACT: Although vascular function is an independent predictor of cardiovascular disease risk, and therefore has significant prognostic value, there is currently not a single clinically accepted method of assessment. The passive leg movement (PLM) assessment predominantly reflects microvascular endothelium-dependent vasodilation and can identify decrements in vascular function with advancing age and pathology. Reliability of the PLM model was only recently determined in women, and has not been adequately investigated in men. Twenty healthy men (age: 27 ± 2 year) were studied on three separate experimental days, resulting in three within-day and three between-day trials. The hyperemic response to PLM was assessed with Doppler ultrasound, and expressed as the absolute peak in leg blood flow (LBFpeak ), change from baseline to peak (ΔLBFpeak ), absolute area under the curve (LBFAUC ), and change in AUC from baseline (ΔLBFAUC ). PLM-induced hyperemia yielded within-day coefficients of variation (CV) from 10.9 to 22.9%, intraclass correlation coefficients (ICC) from 0.82 to 0.90, standard error of the measurement (SEM) from 8.3 to 17.2%, and Pearson's correlation coefficients (r) from 0.56 to 0.81. Between-day assessments of PLM hyperemia resulted in CV from 14.4 to 25%, ICC from 0.75 to 0.87, SEM from 9.8 to 19.8%, and r from 0.46 to 0.75. Similar to previous reports in women, the hyperemic responses to PLM in men display moderate-to-high reliability, and are comparable to reliability data for brachial artery flow mediated vasodilation. These positive reliability findings further support the utility of PLM as a clinical measurement of vascular function and cardiovascular disease risk.
Asunto(s)
Enfermedades Cardiovasculares , Hiperemia , Adulto , Arteria Braquial , Endotelio Vascular , Femenino , Humanos , Pierna/irrigación sanguínea , Masculino , Movimiento/fisiología , Flujo Sanguíneo Regional/fisiología , Reproducibilidad de los Resultados , Vasodilatación/fisiologíaRESUMEN
INTRODUCTION: Despite rigorous rehabilitation aimed at restoring muscle health, anterior cruciate ligament (ACL) injury is often hallmarked by significant long-term quadriceps muscle weakness. Derangements in mitochondrial function are a common feature of various atrophying conditions, yet it is unclear to what extent mitochondria are involved in the detrimental sequela of quadriceps dysfunction after ACL injury. Using a preclinical, non-invasive ACL injury rodent model, our objective was to explore the direct effect of an isolated ACL injury on mitochondrial function, muscle atrophy, and muscle phenotypic transitions. METHODS: A total of 40 male and female, Long Evans rats (16-week-old) were exposed to non-invasive ACL injury, while 8 additional rats served as controls. Rats were euthanized at 3, 7, 14, 28, and 56 days after ACL injury, and vastus lateralis muscles were extracted to measure the mitochondrial respiratory control ratio (RCR; state 3 respiration/state 4 respiration), mitochondrial reactive oxygen species (ROS) production, fiber cross sectional area (CSA), and fiber phenotyping. Alterations in mitochondrial function and ROS production were detected using two-way (sex:group) analyses of variance. To determine if mitochondrial characteristics were related to fiber atrophy, individual linear mixed effect models were run by sex. RESULTS: Mitochondria-derived ROS increased from days 7 to 56 after ACL injury (30-100%, P < 0.05), concomitant with a twofold reduction in RCR (P < 0.05). Post-injury, male rats displayed decreases in fiber CSA (days 7, 14, 56; P < 0.05), loss of IIa fibers (day 7; P < 0.05), and an increase in IIb fibers (day 7; P < 0.05), while females displayed no changes in CSA or phenotyping (P > 0.05). Males displayed a positive relationship between state 3 respiration and CSA at days 14 and 56 (P < 0.05), while females only displayed a similar trend at day 14 (P = 0.05). CONCLUSION: Long-lasting impairments in quadriceps mitochondrial health are present after ACL injury and play a key role in the dysregulation of quadriceps muscle size and composition. Our preclinical data indicate that using mitoprotective therapies may be a potential therapeutic strategy to mitigate alterations in muscle size and characteristic after ACL injury.
RESUMEN
ABSTRACT: Gallbladder polyps (GBPs), especially GBPs ≥5âmm in diameter, are clinically important because they can progress to gallbladder cancer. The known modifiable risk factors for GBP are obesity, metabolic syndrome, and dyslipidemia; however, there is limited evidence regarding specific modifiable risk factors for GBPs ≥5âmm in diameter. Therefore, this study is aimed to investigate the existence of modifiable risk factors affecting the prevalence of GBPs and GBPs ≥5âmm in diameter in a Korean population.A total of 10,119 subjects who visited a single health-screening center at Jeju National University Hospital between January 2009 and December 2019 was included in this study. Binary logistic analyses were performed to identify risk factors affecting the prevalence of GBPs and GBPs ≥5âmm in diameter.The overall prevalence of GBPs and GBPs ≥5âmm in diameter were 9.0% and 4.1%, respectively. Multivariable analysis identified male gender as an independent risk factor affecting the prevalence of GBPs. Moreover, multivariable analysis revealed age and high-density lipoprotein cholesterol levels as independent risk factors for GBPs ≥5âmm in diameter.This study showed that gender was a risk factor affecting the prevalence of GBPs and that age and high-density lipoprotein-cholesterol levels were risk factors for the presence of GBPs ≥5âmm in diameter. High-density lipoprotein cholesterol levels could be a modifiable risk factor affecting the prevalence of large-diameter GBPs.
Asunto(s)
Enfermedades de la Vesícula Biliar/epidemiología , Pólipos/epidemiología , Adulto , Factores de Edad , Anciano , Estudios Transversales , Femenino , Vesícula Biliar/patología , Enfermedades de la Vesícula Biliar/patología , Humanos , Masculino , Persona de Mediana Edad , Pólipos/patología , Prevalencia , República de Corea/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Factores SexualesRESUMEN
Voltage dependent anion channel 2 (VDAC2) is an outer mitochondrial membrane porin known to play a significant role in apoptosis and calcium signaling. Abnormalities in calcium homeostasis often leads to electrical and contractile dysfunction and can cause dilated cardiomyopathy and heart failure. However, the specific role of VDAC2 in intracellular calcium dynamics and cardiac function is not well understood. To elucidate the role of VDAC2 in calcium homeostasis, we generated a cardiac ventricular myocyte-specific developmental deletion of Vdac2 in mice. Our results indicate that loss of VDAC2 in the myocardium causes severe impairment in excitation-contraction coupling by altering both intracellular and mitochondrial calcium signaling. We also observed adverse cardiac remodeling which progressed to severe cardiomyopathy and death. Reintroduction of VDAC2 in 6-week-old knock-out mice partially rescued the cardiomyopathy phenotype. Activation of VDAC2 by efsevin increased cardiac contractile force in a mouse model of pressure-overload induced heart failure. In conclusion, our findings demonstrate that VDAC2 plays a crucial role in cardiac function by influencing cellular calcium signaling. Through this unique role in cellular calcium dynamics and excitation-contraction coupling VDAC2 emerges as a plausible therapeutic target for heart failure.
Asunto(s)
Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Homeostasis , Canal Aniónico 2 Dependiente del Voltaje/genética , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Animales , Apoptosis , Señalización del Calcio , Cardiomiopatía Dilatada/mortalidad , Insuficiencia Cardíaca/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , TranscriptomaRESUMEN
Because patients with chronic obstructive pulmonary disease (COPD) are often physically inactive, it is still unclear whether the lower respiratory capacity in the locomotor muscles of these patients is due to cigarette smoking per se or is secondary to physical deconditioning. Accordingly, the purpose of this study was to examine mitochondrial alterations in the quadriceps muscle of 10 mice exposed to 8 mo of cigarette smoke, a sedentary mouse model of emphysema, and 9 control mice, using immunoblotting, spectrophotometry, and high-resolution respirometry in permeabilized muscle fibers. Mice exposed to smoke displayed a twofold increase in the oxidative stress marker, 4-HNE, (P < 0.05) compared with control mice. This was accompanied by significant decrease in protein expression of UCP3 (65%), ANT (58%), and mitochondrial complexes II-V (â¼60%-75%). In contrast, maximal ADP-stimulated respiration with complex I and II substrates (CON: 23.6 ± 6.6 and SMO: 19.2 ± 8.2 ρM·mg-1·s-1) or octanoylcarnitine (CON: 21.8 ± 9.0 and SMO: 16.5 ± 6.6 ρM·mg-1·s-1) measured in permeabilized muscle fibers, as well as citrate synthase activity, were not significantly different between groups. Collectively, our findings revealed that sedentary mice exposed to cigarette smoke for 8 mo, which is typically associated with pulmonary inflammation and emphysema, exhibited a preserved mitochondrial respiratory capacity for various substrates, including fatty acid, in the skeletal muscle. However, the mitochondrial adaptations induced by cigarette smoke favored the development of chronic oxidative stress, which can indirectly contribute to augment the susceptibility to muscle fatigue and exercise intolerance.NEW & NOTEWORTHY It is unclear whether the exercise intolerance and skeletal muscle mitochondrial dysfunction observed in patients with COPD is due to cigarette smoke exposure, per se, or if they are secondary consequences to inactivity. Herein, while long-term exposure to cigarette smoke induces oxidative stress and an altered skeletal muscle phenotype, cigarette smoke does not directly contribute to mitochondrial dysfunction. With this evidence, we demonstrate the critical role of physical inactivity in cigarette smoke-related skeletal muscle dysfunction.