Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Physiol Genomics ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250149

RESUMEN

Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in ovis aries related to bone growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.

2.
bioRxiv ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38659791

RESUMEN

Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in ovis aries related to bone growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.

3.
Phys Biol ; 20(1)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36223768

RESUMEN

Small gene effects involved in complex/omnigenic traits remain costly to analyse using current genome-wide association studies (GWAS) because of the number of individuals required to return meaningful association(s), a.k.a. study power. Inspired by field theory in physics, we provide a different method called genomic informational field theory (GIFT). In contrast to GWAS, GIFT assumes that the phenotype is measured precisely enough and/or the number of individuals in the population is too small to permit the creation of categories. To extract information, GIFT uses the information contained in the cumulative sums difference of gene microstates between two configurations: (i) when the individuals are taken at random without information on phenotype values, and (ii) when individuals are ranked as a function of their phenotypic value. The difference in the cumulative sum is then attributed to the emergence of phenotypic fields. We demonstrate that GIFT recovers GWAS, that is, Fisher's theory, when the phenotypic fields are linear (first order). However, unlike GWAS, GIFT demonstrates how the variance of microstate distribution density functions can also be involved in genotype-phenotype associations when the phenotypic fields are quadratic (second order). Using genotype-phenotype simulations based on Fisher's theory as a toy model, we illustrate the application of the method with a small sample size of 1000 individuals.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/métodos , Tamaño de la Muestra , Genómica/métodos , Fenotipo , Genotipo
4.
J Theor Biol ; 548: 111198, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35709875

RESUMEN

We show how field- and information theory can be used to quantify the relationship between genotype and phenotype in cases where phenotype is a continuous variable. Given a sample population of phenotype measurements, from various known genotypes, we show how the ordering of phenotype data can lead to quantification of the effect of genotype. This method does not assume that the data has a Gaussian distribution, it is particularly effective at extracting weak and unusual dependencies of genotype on phenotype. However, in cases where data has a special form, (eg Gaussian), we observe that the effective phenotype field has a special form. We use asymptotic analysis to solve both the forward and reverse formulations of the problem. We show how p-values can be calculated so that the significance of correlation between phenotype and genotype can be quantified. This provides a significant generalisation of the traditional methods used in genome-wide association studies GWAS. We derive a field-strength which can be used to deduce how the correlations between genotype and phenotype, and their impact on the distribution of phenotypes.


Asunto(s)
Estudio de Asociación del Genoma Completo , Teoría de la Información , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA