Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ann Neurol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073169

RESUMEN

OBJECTIVE: Intellectual disability is often the outcome of neurodevelopmental disorders and is characterized by significant impairments in intellectual and adaptive functioning. X-linked intellectual disability (XLID) is a subset of these disorders caused by genetic defects on the X chromosome, affecting about 2 out of 1,000 males. In syndromic form, it leads to a broad range of cognitive, behavioral, ocular, and physical disabilities. METHODS: Employing exome or genome sequencing, here we identified 4 missense variants (c.475C > G; p.H159D, c.1373C > A; p.T458N, and c.1585G > A; p.E529K, c.953C > T; p.S318L) and a putative truncating variant (c.1413_1414del; p.Y471*) in the SRPK3 gene in 9 XLID patients from 5 unrelated families. To validate SRPK3 as a novel XLID gene, we established a knockout (KO) model of the SRPK3 orthologue in zebrafish. RESULTS: The 8 patients ascertained postnatally shared common clinical features including intellectual disability, agenesis of the corpus callosum, abnormal eye movement, and ataxia. A ninth case, ascertained prenatally, had a complex structural brain phenotype. Together, these data indicate a pathological role of SRPK3 in neurodevelopmental disorders. In post-fertilization day 5 larvae (free swimming stage), KO zebrafish exhibited severe deficits in eye movement and swim bladder inflation, mimicking uncontrolled ocular movement and physical clumsiness observed in human patients. In adult KO zebrafish, cerebellar agenesis and behavioral abnormalities were observed, recapitulating human phenotypes of cerebellar atrophy and intellectual disability. INTERPRETATION: Overall, these results suggest a crucial role of SRPK3 in the pathogenesis of syndromic X-linked intellectual disability and provide new insights into brain development, cognitive and ocular dysfunction in both humans and zebrafish. ANN NEUROL 2024.

2.
Res Sq ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993381

RESUMEN

Intellectual disability (ID) is a common neurodevelopmental disorder characterized by significantly impaired intellectual and adaptive functioning. X-linked ID (XLID) disorders, caused by defects in genes on the X chromosome, affect 1.7 out of 1,000 males. Employing exome sequencing, we identified three missense mutations (c.475C>G; p.H159D, c.1373C>A; p.T458N, and c.1585G>A; p.E529K) in the SRPK3 gene in seven XLID patients from three independent families. Clinical features common to the patients are intellectual disability, agenesis of the corpus callosum, abnormal smooth pursuit eye movement, and ataxia. SRPK proteins are known to be involved in mRNA processing and, recently, synaptic vesicle and neurotransmitter release. In order to validate SRPK3 as a novel XLID gene, we established a knockout (KO) model of the SRPK3 orthologue in zebrafish. In day 5 of larval stage, KO zebrafish showed significant defects in spontaneous eye movement and swim bladder inflation. In adult KO zebrafish, we found agenesis of cerebellar structures and impairments in social interaction. These results suggest an important role of SRPK3 in eye movements, which might reflect learning problems, intellectual disability, and other psychiatric disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA