RESUMEN
The 3,9-diazaspiro[5.5]undecane-based compounds 2027 and 018 have previously been reported to be potent competitive γ-aminobutyric acid type A receptor (GABAAR) antagonists showing low cellular membrane permeability. Given the emerging peripheral application of GABAAR ligands, we hypothesize 2027 analogs as promising lead structures for peripheral GABAAR inhibition. We herein report a study on the structural determinants of 2027 in order to suggest a potential binding mode as a basis for rational design. The study identified the importance of the spirocyclic benzamide, compensating for the conventional acidic moiety, for GABAAR ligands. The structurally simplified m-methylphenyl analog 1e displayed binding affinity in the high-nanomolar range (Ki = 180 nM) and was superior to 2027 and 018 regarding selectivity for the extrasynaptic α4ßδ subtype versus the α1- and α2- containing subtypes. Importantly, 1e was shown to efficiently rescue inhibition of T cell proliferation, providing a platform to explore the immunomodulatory potential for this class of compounds.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Alcanos/farmacología , Antagonistas del GABA/farmacología , Receptores de GABA-A/efectos de los fármacos , Adyuvantes Inmunológicos/química , Alcanos/química , Proliferación Celular/efectos de los fármacos , Antagonistas del GABA/química , Humanos , Relación Estructura-Actividad , Linfocitos T/citología , Linfocitos T/efectos de los fármacosRESUMEN
Delta selective compound 2 (DS2; 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide) is one of the most widely used tools to study selective actions mediated by δ-subunit-containing GABAA receptors. DS2 was discovered over 10 years ago, but despite great efforts, the precise molecular site of action has remained elusive. Using a combination of computational modeling, site-directed mutagenesis, and cell-based pharmacological assays, we probed three potential binding sites for DS2 and analogs at α 4 ß 1 δ receptors: an α 4 (+) δ (-) interface site in the extracellular domain (ECD), equivalent to the diazepam binding site in αßγ 2 receptors, and two sites in the transmembrane domain (TMD) - one in the α 4 (+) ß 1 (-) and one in the α 4 (-) ß 1 (+) interface, with the α 4 (-) ß 1 (+) site corresponding to the binding site for etomidate and a recently disclosed low-affinity binding site for diazepam. We show that mutations in the ECD site did not abrogate DS2 modulation. However, mutations in the TMD α 4 (+) ß 1 (-) interface, either α 4(S303L) of the α 4 (+) side or ß 1(I289Q) of the ß 1 (-) side, convincingly disrupted the positive allosteric modulation by DS2. This was consistently demonstrated both in an assay measuring membrane potential changes and by whole-cell patch-clamp electrophysiology and rationalized by docking studies. Importantly, general sensitivity to modulators was not compromised in the mutated receptors. This study sheds important light on the long-sought molecular recognition site for DS2, refutes the misconception that the selectivity of DS2 for δ-containing receptors is caused by a direct interaction with the δ-subunit, and instead points toward a functional selectivity of DS2 and its analogs via a surprisingly well conserved binding pocket in the TMD. SIGNIFICANCE STATEMENT: δ-Containing GABAA receptors represent potential drug targets for the treatment of several neurological conditions with aberrant tonic inhibition, yet no drugs are currently in clinical use. With the identification of the molecular determinants responsible for positive modulation by the known compound delta selective compound 2, the ground is laid for design of ligands that selectively target δ-containing GABAA receptor subtypes, for better understanding of tonic inhibition, and ultimately, for rational development of novel drugs.
Asunto(s)
Benzamidas/farmacología , Imidazoles/farmacología , Mutagénesis Sitio-Dirigida/métodos , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Regulación Alostérica , Benzamidas/química , Sitios de Unión , Diazepam/farmacología , Etomidato/farmacología , Células HEK293 , Humanos , Imidazoles/química , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Dominios Proteicos , Receptores de GABA-A/genéticaRESUMEN
We have previously identified 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid (ATPCA) as the most potent substrate-inhibitor of the betaine/GABA transporter 1 (BGT1) (IC50 2.5 µM) reported to date. Herein, we characterize the binding mode of 20 novel analogs and propose the molecular determinants driving BGT1-selectivity. A series of N1-, exocyclic-N-, and C4-substituted analogs was synthesized and pharmacologically characterized in radioligand-based uptake assays at the four human GABA transporters (hGATs) recombinantly expressed in mammalian cells. Overall, the analogs retained subtype-selectivity for hBGT1, though with lower inhibitory activities (mid to high micromolar IC50 values) compared to ATPCA. Further characterization of five of these BGT1-active analogs in a fluorescence-based FMP assay revealed that the compounds are substrates for hBGT1, suggesting they interact with the orthosteric site of the transporter. In silico-guided mutagenesis experiments showed that the non-conserved residues Q299 and E52 in hBGT1 as well as the conformational flexibility of the compounds potentially contribute to the subtype-selectivity of ATPCA and its analogs. Overall, this study provides new insights into the molecular interactions governing the subtype-selectivity of BGT1 substrate-inhibitors. The findings may guide the rational design of BGT1-selective pharmacological tool compounds for future drug discovery.
Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/efectos de los fármacos , Química Computacional , Cristalografía por Rayos X , Diseño de Fármacos , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Humanos , Simulación de Dinámica Molecular , Espectroscopía de Protones por Resonancia Magnética , Estereoisomerismo , Relación Estructura-ActividadRESUMEN
Given the heterogeneity within the γ-aminobutyric acid (GABA) receptor and transporter families, a detailed insight into the pharmacology is still relatively sparse. To enable studies of the physiological roles governed by specific receptor and transporter subtypes, a series of GABA analogues comprising five-membered nitrogen- and sulfur-containing heterocycles as amine bioisosteres were synthesized and pharmacologically characterized at native and selected recombinant GABAA receptors and GABA transporters. The dihydrothiazole and imidazoline analogues, 5-7, displayed moderate GAT activities and GABAA receptor binding affinities in the mid-nanomolar range ( Ki, 90-450 nM). Moreover, they exhibited full and equipotent agonist activity compared to GABA at GABAA-αßγ receptors but somewhat lower potency as partial agonists at the GABAA-ρ1 receptor. Stereoselectivity was observed for compounds 4 and 7 for the GABAA-αßγ receptors but not the GABAA-ρ1 receptor. This study illustrates how subtle differences in these novel amino GABA bioisosteres result in diverse pharmacological profiles in terms of selectivity and efficacy.
Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Compuestos Heterocíclicos/química , Nitrógeno/química , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/farmacología , Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica , Receptores de GABA-A/química , Estereoisomerismo , Relación Estructura-Actividad , Ácido gamma-Aminobutírico/metabolismoRESUMEN
The betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT1) is one of the four GABA transporters (GATs) involved in the termination of GABAergic neurotransmission. Although suggested to be implicated in seizure management, the exact functional importance of BGT1 in the brain is still elusive. This is partly owing to the lack of potent and selective pharmacological tool compounds that can be used to probe its function. We previously reported the identification of 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid (ATPCA), a selective substrate for BGT1 over GAT1/GAT3, but also an agonist for GABAA receptors. With the aim of providing new functional insight into BGT1, we here present the synthesis and pharmacological characterization of the tritiated analogue, [3H]ATPCA. Using traditional uptake assays at recombinant transporters expressed in cell lines, [3H]ATPCA displayed a striking selectivity for BGT1 among the four GATs ( Km and Vmax values of 21 µM and 3.6 nmol ATPCA/(min × mg protein), respectively), but was also found to be a substrate for the creatine transporter (CreaT). In experiments with mouse cortical cell cultures, we observed a Na+-dependent [3H]ATPCA uptake in neurons, but not in astrocytes. The neuronal uptake could be inhibited by GABA, ATPCA, and a noncompetitive BGT1-selective inhibitor, indicating functional BGT1 in neurons. In conclusion, we report [3H]ATPCA as a novel radioactive substrate for both BGT1 and CreaT. The dual activity of the radioligand makes it most suitable for use in recombinant studies.
Asunto(s)
Betaína/farmacología , Transporte Biológico/efectos de los fármacos , Proteínas de Transporte de Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Proteínas Transportadoras de GABA en la Membrana Plasmática/efectos de los fármacos , Ratones , Ácido gamma-Aminobutírico/farmacologíaRESUMEN
N-(1-Benzyl-4-piperidinyl)-2,4-dichlorobenzamide 5 (BPDBA) is a noncompetitive inhibitor of the betaine/GABA transporter 1 (BGT1). We here report the synthesis and structure-activity relationship of 71 analogues. We identify 26m as a more soluble 2,4-Cl substituted 3-pyridine analogue with retained BGT1 activity and an improved off-target profile compared to 5. We performed radioligand-based uptake studies at chimeric constructs between BGT1 and GAT3, experiments with site-directed mutated transporters, and computational docking in a BGT1 homology model based on the newly determined X-ray crystal structure of the human serotonin transporter (hSERT). On the basis of these experiments, we propose a binding mode involving residues within TM10 in an allosteric site in BGT1 that corresponds to the allosteric binding pocket revealed by the hSERT crystal structure. Our study provides first insights into a proposed allosteric binding pocket in BGT1, which accommodates the binding site for a series of novel noncompetitive inhibitors.