Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
World J Microbiol Biotechnol ; 40(7): 226, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822187

RESUMEN

Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.


Asunto(s)
Antibacterianos , Bacterias , Infecciones Bacterianas , Proteínas Bacterianas , Farmacorresistencia Bacteriana Múltiple , Proteínas de Transporte de Membrana , Factores de Virulencia , Antibacterianos/farmacología , Proteínas de Transporte de Membrana/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Virulencia , Factores de Virulencia/metabolismo , Humanos , Animales
2.
Nat Commun ; 15(1): 2584, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519499

RESUMEN

Mutations in mexZ, encoding a negative regulator of the expression of the mexXY efflux pump genes, are frequently acquired by Pseudomonas aeruginosa at early stages of lung infection. Although traditionally related to resistance to the first-line drug tobramycin, mexZ mutations are associated with low-level aminoglycoside resistance when determined in the laboratory, suggesting that their selection during infection may not be necessarily, or only, related to tobramycin therapy. Here, we show that mexZ-mutated bacteria tend to accumulate inside the epithelial barrier of a human airway infection model, thus colonising the epithelium while being protected against diverse antibiotics. This phenotype is mediated by overexpression of lecA, a quorum sensing-controlled gene, encoding a lectin involved in P. aeruginosa tissue invasiveness. We find that lecA overexpression is caused by a disrupted equilibrium between the overproduced MexXY and another efflux pump, MexAB, which extrudes quorum sensing signals. Our results indicate that mexZ mutations affect the expression of quorum sensing-regulated pathways, thus promoting tissue invasiveness and protecting bacteria from the action of antibiotics within patients, something unnoticeable using standard laboratory tests.


Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Humanos , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Tobramicina/farmacología , Tobramicina/metabolismo , Mutación , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana
3.
Nat Rev Microbiol ; 21(10): 671-685, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37208461

RESUMEN

Antibiotic resistance is currently one of the most important public health problems. The golden age of antibiotic discovery ended decades ago, and new approaches are urgently needed. Therefore, preserving the efficacy of the antibiotics currently in use and developing compounds and strategies that specifically target antibiotic-resistant pathogens is critical. The identification of robust trends of antibiotic resistance evolution and of its associated trade-offs, such as collateral sensitivity or fitness costs, is invaluable for the design of rational evolution-based, ecology-based treatment approaches. In this Review, we discuss these evolutionary trade-offs and how such knowledge can aid in informing combination or alternating antibiotic therapies against bacterial infections. In addition, we discuss how targeting bacterial metabolism can enhance drug activity and impair antibiotic resistance evolution. Finally, we explore how an improved understanding of the original physiological function of antibiotic resistance determinants, which have evolved to reach clinical resistance after a process of historical contingency, may help to tackle antibiotic resistance.


Asunto(s)
Infecciones Bacterianas , Humanos , Farmacorresistencia Microbiana/genética , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Bacterias/genética , Antibacterianos/farmacología , Biología , Farmacorresistencia Bacteriana
4.
Expert Opin Drug Discov ; 18(6): 671-686, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37199662

RESUMEN

INTRODUCTION: The resistance-nodulation-division (RND) family is the most important group of multidrug efflux pumps in Gram-negative bacteria. Their inhibition increases the susceptibility of these microorganisms to antibiotics. The study of the effect of efflux pumps' overexpression on bacterial physiology in antibiotic-resistant mutants allows for the identification of exploitable weaknesses associated with resistance acquisition. AREAS COVERED: The authors describe different RND multidrug efflux pumps' inhibition strategies and provide examples of inhibitors. This review also discusses inducers of the expression of efflux pumps, used in human therapy that can produce transient resistance to antibiotics in vivo. Since RND efflux pumps may have a role in bacterial virulence, the use of these systems as targets in the search of antivirulence compounds is also discussed. Finally, this review analyzes how the study of trade-offs associated with resistance acquisition mediated by efflux pumps' overexpression may guide strategies to tackle such resistance. EXPERT OPINION: Increasing the knowledge of the regulation, structure and function of efflux pumps provides information for the rational design of RND efflux pump inhibitors. These inhibitors would increase bacterial susceptibility to several antibiotics and, occasionally, will reduce bacterial virulence. Furthermore, the information on the effect that efflux pumps' overexpression has on bacterial physiology may serve to develop new anti-resistance strategies.


Asunto(s)
Bacterias Gramnegativas , Proteínas de Transporte de Membrana , Humanos , Descubrimiento de Drogas , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Proteínas Bacterianas/genética
5.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108055

RESUMEN

Understanding the consequences in bacterial physiology of the acquisition of drug resistance is needed to identify and exploit the weaknesses derived from it. One of them is collateral sensitivity, a potentially exploitable phenotype that, unfortunately, is not always conserved among different isolates. The identification of robust, conserved collateral sensitivity patterns is then relevant for the translation of this knowledge into clinical practice. We have previously identified a robust fosfomycin collateral sensitivity pattern of Pseudomonas aeruginosa that emerged in different tobramycin-resistant clones. To go one step further, here, we studied if the acquisition of resistance to tobramycin is associated with robust collateral sensitivity to fosfomycin among P. aeruginosa isolates. To that aim, we analyzed, using adaptive laboratory evolution approaches, 23 different clinical isolates of P. aeruginosa presenting diverse mutational resistomes. Nine of them showed collateral sensitivity to fosfomycin, indicating that this phenotype is contingent on the genetic background. Interestingly, collateral sensitivity to fosfomycin was linked to a larger increase in tobramycin minimal inhibitory concentration. Further, we unveiled that fosA low expression, rendering a higher intracellular accumulation of fosfomycin, and a reduction in the expression of the P. aeruginosa alternative peptidoglycan-recycling pathway enzymes, might be on the basis of the collateral sensitivity phenotype.


Asunto(s)
Fosfomicina , Tobramicina , Tobramicina/farmacología , Fosfomicina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pseudomonas aeruginosa , Sensibilidad Colateral al uso de Fármacos , Genómica , Pruebas de Sensibilidad Microbiana
6.
Nat Commun ; 14(1): 1723, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997518

RESUMEN

Collateral sensitivity (CS) is an evolutionary trade-off traditionally linked to the mutational acquisition of antibiotic resistance (AR). However, AR can be temporally induced, and the possibility that this causes transient, non-inherited CS, has not been addressed. Mutational acquisition of ciprofloxacin resistance leads to robust CS to tobramycin in pre-existing antibiotic-resistant mutants of Pseudomonas aeruginosa. Further, the strength of this phenotype is higher when nfxB mutants, over-producing the efflux pump MexCD-OprJ, are selected. Here, we induce transient nfxB-mediated ciprofloxacin resistance by using the antiseptic dequalinium chloride. Notably, non-inherited induction of AR renders transient tobramycin CS in the analyzed antibiotic-resistant mutants and clinical isolates, including tobramycin-resistant isolates. Further, by combining tobramycin with dequalinium chloride we drive these strains to extinction. Our results support that transient CS could allow the design of new evolutionary strategies to tackle antibiotic-resistant infections, avoiding the acquisition of AR mutations on which inherited CS depends.


Asunto(s)
Decualinio , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas de Transporte de Membrana/genética , Sensibilidad Colateral al uso de Fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Ciprofloxacina/farmacología , Tobramicina/farmacología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pruebas de Sensibilidad Microbiana
7.
Microb Biotechnol ; 16(7): 1492-1504, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36976480

RESUMEN

Multidrug efflux pumps are among the main Pseudomonas aeruginosa antibiotic-resistance determinants. Besides, efflux pumps are also involved in other relevant activities of bacterial physiology, including the quorum sensing-mediated regulation of bacterial virulence. Nevertheless, despite the relevance of efflux pumps in bacterial physiology, their interconnection with bacterial metabolism remains obscure. The effect of several metabolites on the expression of P. aeruginosa efflux pumps, and on the virulence and antibiotic resistance of this bacterium, was studied. Phenylethylamine was found to be both inducer and substrate of MexCD-OprJ, an efflux pump involved in P. aeruginosa antibiotic resistance and in extrusion of precursors of quorum-sensing signals. Phenylethylamine did not increase antibiotic resistance; however, the production of the toxin pyocyanin, the tissue-damaging protease LasB and swarming motility were reduced in the presence of this metabolite. This decrease in virulence potential was mediated by a reduction of lasI and pqsABCDE expression, which encode the proteins that synthesise the signalling molecules of two quorum-sensing regulatory pathways. This work sheds light on the interconnection between virulence and antibiotic-resistance determinants, mediated by bacterial metabolism, and points to phenylethylamine as an anti-virulence metabolite to be considered in the study of therapies against P. aeruginosa infections.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Virulencia , Percepción de Quorum , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/metabolismo , Fenetilaminas/farmacología , Fenetilaminas/metabolismo , Factores de Virulencia/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Pseudomonas/microbiología , Biopelículas
8.
Microbiol Spectr ; 11(1): e0227622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36533961

RESUMEN

Collateral sensitivity (CS) is an evolutionary trade-off by which acquisition of resistance to an antibiotic leads to increased susceptibility to another. This Achilles' heel of antibiotic resistance could be exploited to design evolution-based strategies for treating bacterial infections. To date, most studies in the field have focused on the identification of CS patterns in model strains. However, one of the main requirements for the clinical application of this trade-off is that it must be robust and has to emerge in different genomic backgrounds, including preexisting drug-resistant isolates, since infections are frequently caused by pathogens already resistant to antibiotics. Here, we report the first analysis of CS robustness in clinical strains of Pseudomonas aeruginosa presenting different ab initio mutational resistomes. We identified a robust CS pattern associated with short-term evolution in the presence of ciprofloxacin of clinical P. aeruginosa isolates, including representatives of high-risk epidemic clones belonging to sequence type (ST) 111, ST175, and ST244. We observed the acquisition of different ciprofloxacin resistance mutations in strains presenting varied STs and different preexisting mutational resistomes. Importantly, despite these genetic differences, the use of ciprofloxacin led to a robust CS to aztreonam and tobramycin. In addition, we describe the possible application of this evolutionary trade-off to drive P. aeruginosa infections to extinction by using the combination of ciprofloxacin-tobramycin or ciprofloxacin-aztreonam. Our results support the notion that the identification of robust patterns of CS may establish the basis for developing evolution-informed treatment strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens. IMPORTANCE Collateral sensitivity (CS) is a trade-off of antibiotic resistance evolution that could be exploited to design strategies for treating bacterial infections. Clinical application of CS requires it to robustly emerge in different genomic backgrounds. In this study, we performed an analysis to identify robust patterns of CS associated with the use of ciprofloxacin in clinical isolates of P. aeruginosa presenting different mutational resistomes and including high-risk epidemic clones (ST111, ST175, and ST244). We demonstrate the robustness of CS to tobramycin and aztreonam and the potential application of this evolutionary observation to drive P. aeruginosa infections to extinction. Our results support the notion that the identification of robust CS patterns may establish the basis for developing evolutionary strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Aztreonam/uso terapéutico , Infecciones por Pseudomonas/microbiología , Sensibilidad Colateral al uso de Fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tobramicina/uso terapéutico , Ciprofloxacina/farmacología , Genómica , Pruebas de Sensibilidad Microbiana
9.
Adv Exp Med Biol ; 1386: 117-143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36258071

RESUMEN

Pseudomonas is a bacterial genus, with a bona fide environmental habitat that comprises different species, some of them causing diseases in humans and plants, as well as some strains with biotechnological potential. Amongst them, Pseudomonas aeruginosa is currently one of the most important nosocomial pathogens. In addition, this microorganism is a prevalent cause of chronic infections in cystic fibrosis patients and in people suffering from chronic obstructive pulmonary disease. The success of P. aeruginosa in colonising different habitats largely relies on its metabolic versatility and robustness. Besides, this bacterial pathogen harbours in its core genome a large set of virulence determinants that allows it to colonise/infect a variety of hosts, from unicellular organisms to humans. Nevertheless, these are not just the only conditions needed for infecting patients at hospitals. Taking into consideration that infected patients are regularly under antibiotic treatment, the ability to avoid antibiotics' action is also needed. In this sense, P. aeruginosa displays a characteristic low susceptibility to several antibiotics currently used in therapy. This is due to the reduced permeability of its cellular envelopes and the presence in its genome of an arrangement of genes encoding multidrug efflux pumps and antibiotic-inactivating enzymes that contribute to its resilience to antibiotics. Besides intrinsic resistance, P. aeruginosa is able to evolve towards antibiotic resistance through mutations (particularly relevant in the case of chronic infections) and via acquisition of antibiotic resistance genes. It is worth mentioning that acquired resistance is not the only venue that P. aeruginosa has for avoiding the action of antibiotics. Transient resistance can also confer this phenotype. Indeed, the induction of the expression of intrinsic resistance genes by conditions or compounds that P. aeruginosa could face during infection can compromise the effectiveness of antibiotics for treating such infections. In addition, tolerant cells able to survive during the exposure to bactericidal antibiotics without an increase in their antibiotic resistance phenotype are found as well in these patients, and they are the prelude of the evolution towards antibiotic resistance. Finally, P. aeruginosa biofilms, frequently encountered in the lungs of cystic fibrosis patients, in prostheses, or in catheters, present low antibiotic susceptibility and are associated with recalcitrance and disease worsening.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/microbiología , Pseudomonas , Pseudomonas aeruginosa/genética , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
10.
Front Cell Infect Microbiol ; 12: 873989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646736

RESUMEN

Antibiotic resistance is a major human health problem. While health care facilities are main contributors to the emergence, evolution and spread of antibiotic resistance, other ecosystems are involved in such dissemination. Wastewater, farm animals and pets have been considered important contributors to the development of antibiotic resistance. Herein, we review the impact of wildlife in such problem. Current evidence supports that the presence of antibiotic resistance genes and/or antibiotic resistant bacteria in wild animals is a sign of anthropic pollution more than of selection of resistance. However, once antibiotic resistance is present in the wild, wildlife can contribute to its transmission across different ecosystems. Further, the finding that antibiotic resistance genes, currently causing problems at hospitals, might spread through horizontal gene transfer among the bacteria present in the microbiomes of ubiquitous animals as cockroaches, fleas or rats, supports the possibility that these organisms might be bioreactors for the horizontal transfer of antibiotic resistance genes among human pathogens. The contribution of wildlife in the spread of antibiotic resistance among different hosts and ecosystems occurs at two levels. Firstly, in the case of non-migrating animals, the transfer will take place locally; a One Health problem. Paradigmatic examples are the above mentioned animals that cohabit with humans and can be reservoirs and vehicles for antibiotic resistance dissemination. Secondly, migrating animals, such as gulls, fishes or turtles may participate in the dissemination of antibiotic resistance across different geographic areas, even between different continents, which constitutes a Global Health issue.


Asunto(s)
Animales Salvajes , Microbiota , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Farmacorresistencia Microbiana , Ratas
11.
Microbiol Spectr ; 10(4): e0024722, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35766499

RESUMEN

Pseudomonas aeruginosa is an opportunistic human pathogen that usually causes difficult-to-treat infections due to its low intrinsic antibiotic susceptibility and outstanding capacity for becoming resistant to antibiotics. In addition, it has a remarkable metabolic versatility, being able to grow in different habitats, from natural niches to different and changing inpatient environments. Study of the environmental conditions that shape genetic and phenotypic changes of P. aeruginosa toward antibiotic resistance supposes a novelty, since experimental evolution assays are usually performed with well-defined antibiotics in regular laboratory growth media. Therefore, in this work we address the extent to which the nutrients' availability may constrain the evolution of antibiotic resistance. We determined that P. aeruginosa genetic trajectories toward resistance to tobramycin, ceftazidime, and ceftazidime-avibactam are different when evolving in laboratory rich medium, urine, or synthetic sputum. Furthermore, our study, linking genotype with phenotype, showed a clear impact of each analyzed environment on both the fitness and resistance level associated with particular resistance mutations. This indicates that the phenotype associated with specific resistance mutations is variable and dependent on the bacterial metabolic state in each particular habitat. Our results support that the design of evolution-based strategies to tackle P. aeruginosa infections should be based on robust patterns of evolution identified within each particular infection and body location. IMPORTANCE Predicting evolution toward antibiotic resistance (AR) and its associated trade-offs, such as collateral sensitivity, is important to design evolution-based strategies to tackle AR. However, the effect of nutrients' availability on such evolution, particularly those that can be found under in vivo infection conditions, has been barely addressed. We analyzed the evolutionary patterns of P. aeruginosa in the presence of antibiotics in different media, including urine and synthetic sputum, whose compositions are similar to the ones in infections, finding that AR evolution differs, depending on growth conditions. Furthermore, the representative mutants isolated under each condition tested render different AR levels and fitness costs, depending on nutrients' availability, supporting the idea that environmental constraints shape the phenotypes associated with specific AR mutations. Consequently, the selection of AR mutations that render similar phenotypes is environment dependent. The analysis of evolution patterns toward AR requires studying growth conditions mimicking those that bacteria face during in vivo evolution.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Ecosistema , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética
12.
Proc Natl Acad Sci U S A ; 119(15): e2109370119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35385351

RESUMEN

Collateral sensitivity is an evolutionary trade-off whereby acquisition of the adaptive phenotype of resistance to an antibiotic leads to the nonadaptive increased susceptibility to another. The feasibility of harnessing such a trade-off to design evolutionary-based approaches for treating bacterial infections has been studied using model strains. However, clinical application of collateral sensitivity requires its conservation among strains presenting different mutational backgrounds. Particularly relevant is studying collateral sensitivity robustness of already-antibiotic-resistant mutants when challenged with a new antimicrobial, a common situation in clinics that has hardly been addressed. We submitted a set of diverse Pseudomonas aeruginosa antibiotic-resistant mutants to short-term evolution in the presence of different antimicrobials. Ciprofloxacin selects different clinically relevant resistance mutations in the preexisting resistant mutants, which gave rise to the same, robust, collateral sensitivity to aztreonam and tobramycin. We then experimentally determined that alternation of ciprofloxacin with aztreonam is more efficient than ciprofloxacin­tobramycin alternation in driving the extinction of the analyzed antibiotic-resistant mutants. Also, we show that the combinations ciprofloxacin­aztreonam or ciprofloxacin­tobramycin are the most effective strategies for eliminating the tested P. aeruginosa antibiotic-resistant mutants. These findings support that the identification of conserved collateral sensitivity patterns may guide the design of evolution-based strategies to treat bacterial infections, including those due to antibiotic-resistant mutants. Besides, this is an example of phenotypic convergence in the absence of parallel evolution that, beyond the antibiotic-resistance field, could facilitate the understanding of evolution processes, where the selective forces giving rise to new, not clearly adaptive phenotypes remain unclear.


Asunto(s)
Antibacterianos , Ciprofloxacina , Sensibilidad Colateral al uso de Fármacos , Farmacorresistencia Bacteriana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Sensibilidad Colateral al uso de Fármacos/genética , Farmacorresistencia Bacteriana/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética
13.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35291010

RESUMEN

Trade-offs of antibiotic resistance evolution, such as fitness cost and collateral sensitivity (CS), could be exploited to drive evolution toward antibiotic susceptibility. Decline of resistance may occur when resistance to other drug leads to CS to the first one and when compensatory mutations, or genetic reversion of the original ones, reduce fitness cost. Here we describe the impact of antibiotic-free and sublethal environments on declining ceftazidime resistance in different Pseudomonas aeruginosa resistant mutants. We determined that decline of ceftazidime resistance occurs within 450 generations, which is caused by newly acquired mutations and not by reversion of the original ones, and that the original CS of these mutants is preserved. In addition, we observed that the frequency and degree of this decline is contingent on genetic background. Our results are relevant to implement evolution-based therapeutic approaches, as well as to redefine global policies of antibiotic use, such as drug cycling.


Asunto(s)
Antibacterianos , Ceftazidima , Antibacterianos/farmacología , Ceftazidima/farmacología , Farmacorresistencia Bacteriana/genética , Antecedentes Genéticos , Pseudomonas aeruginosa/genética
14.
Microb Biotechnol ; 15(2): 613-629, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33960651

RESUMEN

The rise of antibiotic resistance and the reduced amount of novel antibiotics support the need of developing novel strategies to fight infections, based on improving the use of the antibiotics we already have. Collateral sensitivity is an evolutionary trade-off associated with the acquisition of antibiotic resistance that can be exploited to tackle this relevant health problem. However, different works have shown that patterns of collateral sensitivity are not always conserved, thus precluding the exploitation of this evolutionary trade-off to fight infections. In this work, we identify a robust pattern of collateral sensitivity to fosfomycin in Pseudomonas aeruginosa antibiotic-resistant mutants, selected by antibiotics belonging to different structural families. We characterize the underlying mechanism of the collateral sensitivity observed, which is a reduced expression of the genes encoding the peptidoglycan-recycling pathway, which preserves the peptidoglycan synthesis in situations where its de novo synthesis is blocked, and a reduced expression of fosA, encoding a fosfomycin-inactivating enzyme. We propose that the identification of robust collateral sensitivity patterns, as well as the understanding of the molecular mechanisms behind these phenotypes, would provide valuable information to design evolution-based strategies to treat bacterial infections.


Asunto(s)
Fosfomicina , Infecciones por Pseudomonas , Antibacterianos/farmacología , Sensibilidad Colateral al uso de Fármacos , Fosfomicina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Peptidoglicano , Fenotipo , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
15.
Curr Opin Microbiol ; 64: 125-132, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34710741

RESUMEN

Pseudomonas aeruginosa, a bacterium characterized for its low antibiotics' susceptibility, is one of the most relevant opportunistic pathogens, causing infections at hospitals and in cystic fibrosis patients. Besides its relevance for human health, P. aeruginosa colonizes environmental ecosystems; therefore the elements driving its infectivity and antibiotic resistance must be analyzed from a One-Health perspective. Although some epidemic clones have been described, there are not specific lineages linked to infections, suggesting that P. aeruginosa virulence and antibiotic resistance determinants evolved in nature to play functions other than infecting the human host and avoiding antimicrobial treatment. Herein, we review current information on the population structure of P. aeruginosa and on the functional role that its resistance and virulence determinants have in non-clinical ecosystems.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Ecosistema , Humanos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética
16.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360847

RESUMEN

The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Infecciones Oportunistas , Acinetobacter baumannii , Aeromonas , Animales , Burkholderia cepacia , Ecosistema , Humanos , Pseudomonas aeruginosa , Shewanella , Stenotrophomonas maltophilia
17.
Pest Manag Sci ; 77(10): 4564-4571, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34086397

RESUMEN

BACKGROUND: Ceratocystis fimbriata is a hazardous fungal pathogen able to cause black rot disease on sweet potato. The management of C. fimbriata strongly relies on the use of toxic fungicides, and there is a lack of efficient alternative strategies. RESULTS: The antifungal properties of quinolinic acid (QA) were studied for the first time, indicating that QA shows selective antifungal activity against C. fimbriata. QA inhibited completely the mycelial growth of C. fimbriata at less than 0.8 mg mL-1 concentration (pH 4), and was able to produce alterations in the fungal cell wall, and to impede spore agglutination and mycelium formation. QA significantly reduced the concentration of ergosterol, and was able to associate to iron (II), suggesting that QA may be a lanosterol 14-α demethylase inhibitor. In preventive applications, QA reduced the disease incidence of C. fimbriata on sweet potato by 75%, achieving higher control efficacy in comparison with commercial fungicides prochloraz and carbendazim. CONCLUSIONS: The first selective antifungal agent against C. fimbriata was discovered in this work, and showed suitable antifungal properties for the management of black rot disease. © 2021 Society of Chemical Industry.


Asunto(s)
Ascomicetos , Ipomoea batatas , Ceratocystis , Enfermedades de las Plantas , Ácido Quinolínico
18.
Environ Microbiol ; 23(12): 7396-7411, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33818002

RESUMEN

Multidrug efflux pumps are ancient elements encoded in every genome, from bacteria to humans. In bacteria, in addition to antibiotics, efflux pumps extrude a wide range of substrates, including quorum sensing signals, bacterial metabolites, or plant-produced compounds. This indicates that their original functions may differ from their recently acquired role in the extrusion of antibiotics during human infection. Concerning plant-produced compounds, some of them are substrates and inducers of the same efflux pump, suggesting a coordinated plant/bacteria coevolution. Herein we analyse the ability of 1243 compounds from a Natural Product-Like library to induce the expression of P. aeruginosa mexCD-oprJ or mexAB-oprM efflux pumps' encoding genes. We further characterized natural-like compounds that do not trigger antibiotic resistance in P. aeruginosa and that act as virulence inhibitors, choosing those that were not only inducers but substrates of the same efflux pump. Four compounds impair swarming motility, exotoxin secretion through the Type 3 Secretion System (T3SS) and the ability to kill Caenorhabditis elegans, which might be explained by the downregulation of genes encoding flagellum and T3SS. Our results emphasize the possibility of discovering new anti-virulence drugs by screening natural or natural-like libraries for compounds that behave as both, inducers and substrates of efflux pumps.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Pseudomonas aeruginosa , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulencia
19.
Pest Manag Sci ; 77(4): 1668-1673, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33202090

RESUMEN

BACKGROUND: Xanthomonas axonopodis pv. glycines (Xag) is a hazardous pathogen able to cause bacterial pustule disease in soybean, reducing crop yield and quality. Although flavonoids rutin and genistein are known to play an important role in soybean defence, soybean is only able to produce Biochanin A in low concentration. RESULTS: In this work, Biochanin A was found to produce higher antibacterial activity against Xag in comparison with genistein (minimum inhibitory concentration < 100 µg/mL). Biochanin A was able to inhibit DNA synthesis and flagella formation in Xag, and altered the composition of the bacterial membrane. These effects reduced swimming motility, extracellular protease activity and biofilm formation. Further, Biochanin A was tested for the control of Xag in soybean leaves, showing similar, or even higher, inhibitory ability in comparison with some products commonly used for the control of this pathogen. CONCLUSIONS: The antibacterial properties of Biochanin A against Xag have been studied for the first time, revealing new insights on the potential applications of this isoflavonoid for the management of bacterial pustule disease. © 2020 Society of Chemical Industry.


Asunto(s)
Xanthomonas axonopodis , Xanthomonas , Antibacterianos/farmacología , Genisteína/farmacología , Glicina , Enfermedades de las Plantas , Glycine max
20.
Microbiologyopen ; 8(11): e945, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31724836

RESUMEN

Infectious diseases still stand as a major cause of morbidity and mortality, and this problem can be worsened with the current antimicrobial resistance crisis. To tackle this crisis more studies analyzing the causes, routes, and reservoirs where antimicrobial resistance can emerge and expand, together with new antimicrobials and strategies for fighting antimicrobial resistance are needed. In the current special issue of MicrobiologyOpen, a set of articles dealing with the multiple faces of antimicrobial resistance are presented. These articles provide new information for understanding and addressing this problem.


Asunto(s)
Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Enfermedades Transmisibles/tratamiento farmacológico , Enfermedades Transmisibles/microbiología , Farmacorresistencia Microbiana , Política de Salud , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA