RESUMEN
Feeding behavior is a complex process that depends on the ability of the brain to integrate hormonal and nutritional signals, such as glucose. One glucosensing mechanism relies on the glucose transporter 2 (GLUT2) in the hypothalamus, especially in radial glia-like cells called tanycytes. Here, we analyzed whether a GLUT2-dependent glucosensing mechanism is required for the normal regulation of feeding behavior in GFAP-positive tanycytes. Genetic inactivation of Glut2 in GFAP-expressing tanycytes was performed using Cre/Lox technology. The efficiency of GFAP-tanycyte targeting was analyzed in the anteroposterior and dorsoventral axes by evaluating GFP fluorescence. Feeding behavior, hormonal levels, neuronal activity using c-Fos, and neuropeptide expression were also analyzed in the fasting-to-refeeding transition. In basal conditions, Glut2-inactivated mice had normal food intake and meal patterns. Implementation of a preceeding fasting period led to decreased total food intake and a delay in meal initiation during refeeding. Additionally, Glut2 inactivation increased the number of c-Fos-positive cells in the ventromedial nucleus in response to fasting and a deregulation of Pomc expression in the fasting-to-refeeding transition. Thus, a GLUT2-dependent glucose-sensing mechanism in GFAP-tanycytes is required to control food consumption and promote meal initiation after a fasting period.
Asunto(s)
Células Ependimogliales , Conducta Alimentaria , Transportador de Glucosa de Tipo 2 , Animales , Ratones , Células Ependimogliales/metabolismo , Ayuno , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Glucosa/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transportador de Glucosa de Tipo 2/metabolismoRESUMEN
Obesity has drastically increased over the last few decades. Obesity is associated with elevated insulin levels, which can gain access to the brain, including into dopamine neurons of the ventral tegmental area (VTA), a brain region critical for mediating reward-seeking behavior. Synaptic plasticity of VTA dopamine neurons is associated with altered motivation to obtain reinforcing substances such as food and drugs of abuse. Under physiological circumstances, insulin in the VTA can suppress excitatory synaptic transmission onto VTA dopamine neurons and reduce aspects of palatable feeding behavior. However, it is unknown how insulin modulates excitatory synaptic transmission in pathological circumstances such as hyperinsulinemia. Using patch-clamp electrophysiology, we demonstrate that, in a hyperinsulinemic mouse model, insulin has reduced capacity to cause a synaptic depression of VTA dopamine neurons, although both low-frequency stimulation-induced long-term depression and cannabinoid-induced depression were normal. These results suggest that insulin action in the VTA during pathological hyperinsulinemia is disrupted and may lead to increased feeding behavior.