Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Environ Manage ; 312: 114881, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35306419

RESUMEN

Climate induced changes in runoff regimes and ongoing anthropogenic modification of land use and land cover (LULC) are shifting ambient water quality signals worldwide. Modulation of these signals by the physical catchment structure over different scales adds complexity to interpreting and analyzing measured data. Further bias may be introduced where monitoring networks are not representative of the structure of catchments in a given region. Here, we present a new environmental regionalization method to assess the representativeness of water quality monitoring (WQM) networks and to identify key structural drivers linked to water quality signals. Unique numerical codes were generated at the pixel level to provide wall-to-wall coverage of key Catchment Structural Units (CSUs) based on LULC, surficial geology, wetlands and slope. CSU codes were generated for all tributary (AT) catchments >20 km2 in Southern Alberta (n = 289), Canada, to determine the representativeness of an existing WQM network (54 tributary catchments) and to assess the explanatory power of CSUs with respect to water quality signals. Cluster analysis (CA) and multi-dimensional scaling (MDS) on the percent area of CSUs in the AT catchments identified six primary structural clusters in Southern Alberta. A clear gradient in catchment structure was evident progressing downstream from the Rocky Mountain headwaters through the foothills and prairie/plains region. Montane and grassland regions were found to be potentially under-represented by the current WQM program whereas catchments dominated by agriculture were likely over-represented. The disproportionate impact of specific CSU combinations on water quality was illustrated where the CA and MDS analyses indicated that even small percentages of urban areas and badland type topography results in elevated concentrations of total recoverable metals, nutrients and major ions. The application of the CSU approach in Southern Alberta demonstrates its value as an alternative method to assess and/or redesign existing WQM networks and to link water quality data to the structural composition of catchments. The general availability of the required data to generate CSUs provides universal potential for the approach to help assess other WQM programs and to contextualize data records. Applying the CSU approach when developing new ambient WQM networks can also help reduce the potential of over-monitoring similarly structured catchments as well as ensuring that all structural classes are represented by the data being generated.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Agricultura , Alberta , Humedales
2.
J Soils Sediments ; 20(12): 4160-4193, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33239964

RESUMEN

PURPOSE: This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. METHODS: Web of Science and Google Scholar were used to review published papers spanning the period 2013-2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018-2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. SCOPE: Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. CONCLUSIONS: The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach.

3.
Hydrol Process ; 34(11): 2381-2400, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32612321

RESUMEN

Previous studies comparing sediment fingerprinting un-mixing models report large differences in their accuracy. The representation of tracer concentrations in source groups is perhaps the largest difference between published studies. However, the importance of decisions concerning the representation of tracer distributions has not been explored explicitly. Accordingly, potential sediment sources in four contrasting catchments were intensively sampled. Virtual sample mixtures were formed using between 10 and 100% of the retrieved samples to simulate sediment mobilization and delivery from subsections of each catchment. Source apportionment used models with a transformed multivariate normal distribution, normal distribution, 25th-75th percentile distribution and a distribution replicating the retrieved source samples. The accuracy and precision of model results were quantified and the reasons for differences were investigated. The 25th-75th percentile distribution produced the lowest mean inaccuracy (8.8%) and imprecision (8.5%), with the Sample Based distribution being next best (11.5%; 9.3%). The transformed multivariate (16.9%; 17.3%) and untransformed normal distributions (16.3%; 20.8%) performed poorly. When only a small proportion of the source samples formed the virtual mixtures, accuracy decreased with the 25th-75th percentile and Sample Based distributions so that when <20% of source samples were used, the actual mixture composition infrequently fell outside of the range of uncertainty shown in un-mixing model outputs. Poor performance was due to combined random Monte Carlo numbers generated for all tracers not being viable for the retrieved source samples. Trialling the use of a 25th-75th percentile distribution alongside alternatives may result in significant improvements in both accuracy and precision of fingerprinting estimates, evaluated using virtual mixtures. Caution should be exercised when using a normal type distribution, without exploration of alternatives, as un-mixing model performance may be unacceptably poor.

4.
Sci Rep ; 10(1): 10502, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601368

RESUMEN

eDNA refers to DNA extracted from an environmental sample with the goal of identifying the occurrence of past or current biological communities in aquatic and terrestrial environments. However, there is currently a lack of knowledge regarding the soil memory effect and its potential impact on lake sediment eDNA records. To investigate this issue, two contrasted sites located in cultivated environments in France were studied. In the first site, soil samples were collected (n = 30) in plots for which the crop rotation history was documented since 1975. In the second site, samples were collected (n = 40) to compare the abundance of currently observed taxa versus detected taxa in cropland and other land uses. The results showed that the last cultivated crop was detected in 100% of the samples as the most abundant. In addition, weeds were the most abundant taxa identified in both sites. Overall, these results illustrate the potential of eDNA analyses for identifying the recent (< 10 years) land cover history of soils and outline the detection of different taxa in cultivated plots. The capacity of detection of plant species grown on soils delivering sediments to lacustrine systems is promising to improve our understanding of sediment transfer processes over short timescales.


Asunto(s)
ADN Ambiental/análisis , Sedimentos Geológicos/química , Suelo/química , ADN de Plantas/genética , Francia , Lagos , Plantas/genética
5.
Chemosphere ; 225: 849-858, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30904765

RESUMEN

The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in Japan resulted in a major release of radionuclides into the environment. Compared to other radionuclides, few studies have investigated the fate of actinides in the environment. Accordingly, this research investigates the Pu composition in soil samples collected in paddy fields before and after the accident. Furthermore, the vertical distributions of Pu and U isotopic signatures, along with 137Cs activities, were measured in a sediment core collected in the Mano Dam reservoir, in the Fukushima Prefecture. Changes in the relative contributions of the major actinide sources (global fallout or FDNPP derived fallout) were investigated in sediment deposited in the reservoir. The distinct peak observed for all Pu isotope ratios (240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu) and for 137Cs concentrations in the sediment core was attributed to the Fukushima fallout, and coincided with the maximum atomic contribution of only 4.8 ±â€¯1.0% of Pu from the FDNPP. Furthermore, 236U/238U ratios measured in the sediment core remained close to the global fallout signature indicating there was likely no U from the FDNPP accident detected in the sediment core. More research is required on the environmental dynamics of trace actinides in landscapes closer to the FDNPP where there are likely to be greater abundances of FDNPP-derived Pu and U.


Asunto(s)
Accidente Nuclear de Fukushima , Sedimentos Geológicos/química , Plutonio/análisis , Monitoreo de Radiación/métodos , Contaminantes Radiactivos del Suelo/análisis , Uranio/análisis , Radioisótopos de Cesio/análisis , Japón , Plantas de Energía Nuclear , Contaminantes Radiactivos del Agua/análisis
6.
Sci Total Environ ; 665: 873-881, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30790760

RESUMEN

An excessive supply of sediment is observed in numerous rivers across the world where it leads to deleterious impacts. Information on the sources delivering this material to waterbodies is required to design effective management measures, and sediment tracing or fingerprinting techniques are increasingly used to quantify the amount of sediment derived from different sources. However, the current methods used to identify the land use contributions to sediment have a limited discrimination power. Here, we investigated the potential of environmental DNA (eDNA) to provide more detailed information on the plant species found in sediment source areas as a next generation fingerprint. To this end, flood sediment deposits (n = 12) were collected in 2017 in two catchments impacted by the Fukushima radioactive fallout along differing river sections draining forests, cropland or a mix of both land uses. Conventional fingerprints (i.e. fallout radionuclides and organic matter properties) were also measured in these samples. The conventional fingerprint model results showed that most sediment samples contained a dominant proportion of subsoil material. Nevertheless, the eDNA information effectively discriminated the three above-mentioned groups of sediment, with the dominance of tree, shrub and fern species in sediment sampled in rivers draining forests versus a majority of grass, algae and cultivated plant species in sediment collected in rivers draining cropland. Based on these encouraging results, future research should examine the potential of eDNA in mixed land use catchments where the contribution of topsoil to sediment dominates and where the cultivation of land has not been abandoned in order to better characterize the memory effect of eDNA in soils and sediment.


Asunto(s)
ADN/análisis , Accidente Nuclear de Fukushima , Sedimentos Geológicos/análisis , Monitoreo de Radiación/métodos , Ceniza Radiactiva/análisis , Contaminantes Radiactivos del Agua/análisis , Carbono/análisis , Isótopos de Carbono/análisis , Japón , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Radioisótopos/análisis
7.
Environ Pollut ; 240: 125-139, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29730421

RESUMEN

Fine sediment transport in rivers is exacerbated during flood events. These particles may convey various contaminants (i.e. metals, pathogens, industrial chemicals, etc.), and significantly impact water quality. The exceptional June 2016 flood of the Seine River (catchment area: 65 000 km2, France), potentially mobilized and deposited contaminated materials throughout the Paris region. Flood sediment deposits (n = 29) were collected along the Seine River and its main tributaries upstream (Yonne, Loing and Marne Rivers) and downstream of Paris (Oise and Eure Rivers). Fallout radionuclides (137Cs, 7Be) were measured to characterize the sources of the material transiting the river, while trace elements (e.g. Cr, Ni, Zn, Cu, As, Cd, Sb, Pb, Tl, Ag) and stable lead isotopes (206Pb/207Pb) were analyzed to quantify the contamination of sediment transported during the flood. In upper sections of the Seine River, sediment mainly originated from the remobilization of particles with a well-balanced contribution of surface and subsurface sources. In the upstream tributaries, sediment almost exclusively originated from the remobilization of subsurface particles. In Paris and downstream of Paris, recently eroded particles and surface sources dominated, suggesting particles were mainly supplied by urban runoff and the erosion of agricultural soils. The highest metal concentrations and Enrichment Factors (EF) were found in the sediment collected in the Loing, Orge and Yvette upstream tributaries. Although these inputs were diluted in the Seine River, an increase in elemental concentrations was observed, progressing downstream through Paris. However, EFs in sediment collected along the Seine River were lower or in the same range of values sampled over the last several decades, reflecting the progressive decontamination of the urbanized Seine River basin.


Asunto(s)
Monitoreo del Ambiente , Inundaciones , Metales/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Agricultura , Berilio , Radioisótopos de Cesio , Francia , Sedimentos Geológicos/química , Industrias , Isótopos , Radioisótopos , Urbanización
8.
Environ Pollut ; 240: 167-176, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29734077

RESUMEN

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a significant release of radionuclides that were deposited on soils in Northeastern Japan. Plutonium was detected at trace levels in soils and sediments collected around the FDNPP. However, little is known regarding the spatial-temporal variation of plutonium in sediment transiting rivers in the region. In this study, plutonium isotopic compositions were first measured in soils (n = 5) in order to investigate the initial plutonium deposition. Then, plutonium isotopic compositions were measured on flood sediment deposits (n = 12) collected after major typhoon events in 2011, 2013 and 2014. After a thorough radiochemical purification, isotopic ratios (240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu) were measured with a Multi-Collector Inductively Coupled Mass Spectrometer (MC ICP-MS), providing discrimination between plutonium derived from global fallout, from atmospheric nuclear weapon tests, and plutonium derived from the FDNPP accident. Results demonstrate that soils with the most Fukushima-derived plutonium were in the main radiocaesium plume and that there was a variable mixture of plutonium sources in the flood sediment samples. Plutonium concentrations and isotopic ratios generally decreased between 2011 and 2014, reflecting the progressive erosion and transport of contaminated sediment in this coastal river during flood events. Exceptions to this general trend were attributed to the occurrence of decontamination works or the remobilisation of contaminated material during typhoons. The different plutonium concentrations and isotopic ratios obtained on three aliquots of a single sample suggest that the Fukushima-derived plutonium was likely borne by discrete plutonium-containing particles. In the future, these particles should be isolated and further characterized in order to better understand the fate of this long-lived radionuclide in the environment.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Suelo/química , Accidente Nuclear de Fukushima , Sedimentos Geológicos/química , Japón , Espectrometría de Masas , Plantas de Energía Nuclear , Plutonio , Radioisótopos , Ríos/química , Contaminantes Radiactivos del Agua/análisis
9.
Sci Total Environ ; 612: 1079-1090, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28892848

RESUMEN

The Fukushima nuclear accident in Japan resulted in the deposition of radiocesium over forested and rural landscapes northwest of the power plant. Although there have been several investigations into the dynamics of contaminated river sediment, less attention has been paid to the sources of deposited particulate matter in dams and reservoirs. In the Fukushima Prefecture, there are 10 significant dams and over a 1000 reservoirs for both agricultural and surface water management. These reservoirs may have trapped a significant volume of radiocesium-contaminated sediment. Therefore, characterizing the sources of contaminated particulate matter is important for the ongoing management of contamination in the region. Accordingly, the composition of particulate matter deposited in the Mano Dam reservoir, approximately 40km northwest of the power plant, was investigated with the analyses and modelling of carbon and nitrogen stable isotope ratios (δ13C and δ15N), total organic carbon (TOC) and total nitrogen (TN) concentrations. Four sediment cores, with lengths ranging 29-41cm, were sampled in the Mano Dam. Source samples from 46 forest soils, 28 cultivated soils and 25 subsoils were used to determine the source contributions of particulate matter. Carbon and nitrogen parameters were analyzed on all samples and a concentration-dependent distribution modelling approach was used to apportion source contributions. Three of the four cores sampled in the Mano Dam reservoir had distinct radiocesium peaks representative of the initial post-accident wash-off phase. Cultivated sources were responsible for 48±7% of the deposited fine particulate matter whereas forests were modelled to contribute 27±6% and subsoil sources 25±4%. Ongoing decontamination of cultivated sources in the Fukushima region should result in a decrease of contaminated matter deposition in reservoirs.


Asunto(s)
Radioisótopos de Cesio/análisis , Accidente Nuclear de Fukushima , Material Particulado/análisis , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis , Japón , Monitoreo de Radiación , Agua
10.
Sci Rep ; 7: 42099, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28169335

RESUMEN

Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. High suspended sediment loads, often generated from eroding agricultural landscapes, are known to degrade downstream environments. Accordingly, there is a need to understand soil erosion dynamics during flood events. Suspended sediment was therefore sampled in the river network and at tile drain outlets during five flood events in a lowland drained catchment in France. Source and sediment fallout radionuclide concentrations (7Be, 210Pbxs) were measured to quantify both the fraction of recently eroded particles transported during flood events and their residence time. Results indicate that the mean fraction of recently eroded sediment, estimated for the entire Louroux catchment, increased from 45 ± 20% to 80 ± 20% between December 2013 and February 2014, and from 65 ± 20% to 80 ± 20% in January 2016. These results demonstrate an initial flush of sediment previously accumulated in the river channel before the increasing supply of sediment recently eroded from the hillslopes during subsequent events. This research highlights the utility of coupling continuous river monitoring and fallout radionuclide measurements to increase our understanding of sediment dynamics and improve the management of soil and water resources in agricultural catchments.

11.
Sci Total Environ ; 575: 1384-1394, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27720250

RESUMEN

Understanding the sources of sediment, organic matter and nitrogen (N) transferred from terrestrial to aquatic environments is important for managing the deleterious off-site impacts of soil erosion. In particular, investigating the sources of organic matter associated with fine sediment may also provide insight into carbon (C) and N budgets. Accordingly, the main sources of fine sediment, organic matter (indicated by total organic carbon), and N are determined for three nested catchments (2.5km2, 75km2, and 3076km2) in subtropical Australia. Source samples included subsoil and surface soil, along with C3 and C4 vegetation. All samples were analysed for stable isotopes (δ13C, δ15N) and elemental composition (TOC, TN). A stable isotope mixing model (SIAR) was used to determine relative source contributions for different spatial scales (nested catchments), climatic conditions and flow stages. Subsoil was the main source of fine sediment for all catchments (82%, SD=1.15) and the main N source at smaller scales (55-76%, SD=4.6-10.5), with an exception for the wet year and at the larger catchment, where surface soil was the dominant N source (55-61%, SD=3.6-9.9), though contributions were dependent on flow (59-680m3/s). C3 litter was the main source of organic C export for the two larger catchments (53%, SD=3.8) even though C4 grasses dominate the vegetation cover in these catchments. The sources of fine sediment, organic matter and N differ in subtropical catchments impacted by erosion, with the majority of C derived from C3 leaf litter and the majority of N derived from either subsoil or surface soil. Understanding these differences will assist management in reducing sediment, organic matter and N transfers in similar subtropical catchments while providing a quantitative foundation for testing C and N budgets.

12.
Sci Rep ; 6: 34828, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694832

RESUMEN

Fallout from the Fukushima Dai-ichi nuclear power plant accident resulted in a 3000-km2 radioactive contamination plume. Here, we model the progressive dilution of the radiocesium contamination in 327 sediment samples from two neighboring catchments with different timing of soil decontamination. Overall, we demonstrate that there has been a ~90% decrease of the contribution of upstream contaminated soils to sediment transiting the coastal plains between 2012 (median - M - contribution of 73%, mean absolute deviation - MAD - of 27%) and 2015 (M 9%, MAD 6%). The occurrence of typhoons and the progress of decontamination in different tributaries of the Niida River resulted in temporary increases in local contamination. However, the much lower contribution of upstream contaminated soils to coastal plain sediment in November 2015 demonstrates that the source of the easily erodible, contaminated material has potentially been removed by decontamination, diluted by subsoils, or eroded and transported to the Pacific Ocean.

13.
J Environ Manage ; 183(Pt 3): 742-753, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27647133

RESUMEN

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in radiocesium fallout contaminating coastal catchments of the Fukushima Prefecture. As the decontamination effort progresses, the potential downstream migration of radiocesium contaminated particulate matter from forests, which cover over 65% of the most contaminated region, requires investigation. Carbon and nitrogen elemental concentrations and stable isotope ratios are thus used to model the relative contributions of forest, cultivated and subsoil sources to deposited particulate matter in three contaminated coastal catchments. Samples were taken from the main identified sources: cultivated (n = 28), forest (n = 46), and subsoils (n = 25). Deposited particulate matter (n = 82) was sampled during four fieldwork campaigns from November 2012 to November 2014. A distribution modelling approach quantified relative source contributions with multiple combinations of element parameters (carbon only, nitrogen only, and four parameters) for two particle size fractions (<63 µm and <2 mm). Although there was significant particle size enrichment for the particulate matter parameters, these differences only resulted in a 6% (SD 3%) mean difference in relative source contributions. Further, the three different modelling approaches only resulted in a 4% (SD 3%) difference between relative source contributions. For each particulate matter sample, six models (i.e. <63 µm and <2 mm from the three modelling approaches) were used to incorporate a broader definition of potential uncertainty into model results. Forest sources were modelled to contribute 17% (SD 10%) of particulate matter indicating they present a long term potential source of radiocesium contaminated material in fallout impacted catchments. Subsoils contributed 45% (SD 26%) of particulate matter and cultivated sources contributed 38% (SD 19%). The reservoir of radiocesium in forested landscapes in the Fukushima region represents a potential long-term source of particulate contaminated matter that will require diligent management for the foreseeable future.


Asunto(s)
Radioisótopos de Cesio/análisis , Bosques , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Accidente Nuclear de Fukushima , Sedimentos Geológicos/análisis , Japón , Modelos Teóricos , Isótopos de Nitrógeno/análisis , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis
14.
Sci Total Environ ; 566-567: 968-980, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27300445

RESUMEN

Soil erosion often supplies high sediment loads to rivers, degrading water quality and contributing to the siltation of reservoirs and lowland river channels. These impacts are exacerbated in agricultural catchments where modifications in land management and agricultural practices were shown to accelerate sediment supply. In this study, sediment sources were identified with a novel tracing approach combining cesium ((137)Cs) and strontium isotopes ((87)Sr/(86)Sr) in the Louroux pond, at the outlet of a lowland cultivated catchment (24km(2), Loire River basin, France) representative of drained agricultural areas of Northwestern Europe. Surface soil (n=36) and subsurface channel bank (n=17) samples were collected to characterize potential sources. Deposited sediment (n=41) was sampled across the entire surface of the pond to examine spatial variation in sediment deposits. In addition, a 1.10m sediment core was sampled in the middle of the pond to reconstruct source variations throughout time. (137)Cs was used to discriminate between surface and subsurface sources, whereas (87)Sr/(86)Sr ratios discriminated between lithological sources. A distribution modeling approach quantified the relative contribution of these sources to the sampled sediment. Results indicate that surface sources contributed to the majority of pond (µ 82%, σ 1%) and core (µ 88%, σ 2%) sediment with elevated subsurface contributions modeled near specific sites close to the banks of the Louroux pond. Contributions of the lithological sources were well mixed in surface sediment across the pond (i.e., carbonate sediment contribution, µ 48%, σ 1% and non-carbonate sediment contribution, µ 52%, σ 3%) although there were significant variations of these source contributions modeled for the sediment core between 1955 and 2013. These fluctuations reflect both the progressive implementation of land consolidation schemes in the catchment and the eutrophication of the pond. This original sediment fingerprinting study demonstrates the potential of combining radionuclide and strontium isotopic geochemistry measurements to quantify sediment sources in cultivated catchments.

15.
J Environ Radioact ; 148: 92-110, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26142817

RESUMEN

The devastating tsunami triggered by the Great East Japan Earthquake on March 11, 2011 inundated the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) resulting in a loss of cooling and a series of explosions releasing the largest quantity of radioactive material into the atmosphere since the Chernobyl nuclear accident. Although 80% of the radionuclides from this accidental release were transported over the Pacific Ocean, 20% were deposited over Japanese coastal catchments that are subject to frequent typhoons. Among the radioisotopes released during the FDNPP accident, radiocesium ((134)Cs and (137)Cs) is considered the most serious current and future health risk for the local population. The goal of this review is to synthesize research relevant to the transfer of FDNPP derived radiocesium from hillslopes to the Pacific Ocean. After radiocesium fallout deposition on vegetation and soils, the contamination may remain stored in forest canopies, in vegetative litter on the ground, or in the soil. Once radiocesium contacts soil, it is quickly and almost irreversibly bound to fine soil particles. The kinetic energy of raindrops instigates the displacement of soil particles, and their bound radiocesium, which may be mobilized and transported with overland flow. Soil erosion is one of the main processes transferring particle-bound radiocesium from hillslopes through rivers and streams, and ultimately to the Pacific Ocean. Accordingly this review will summarize results regarding the fundamental processes and dynamics that govern radiocesium transfer from hillslopes to the Pacific Ocean published in the literature within the first four years after the FDNPP accident. The majority of radiocesium is reported to be transported in the particulate fraction, attached to fine particles. The contribution of the dissolved fraction to radiocesium migration is only relevant in base flows and is hypothesized to decline over time. Owing to the hydro-meteorological context of the Fukushima region, the most significant transfer of particulate-bound radiocesium occurs during major rainfall and runoff events (e.g. typhoons and spring snowmelt). There may be radiocesium storage within catchments in forests, floodplains and even within hillslopes that may be remobilized and contaminate downstream areas, even areas that did not receive fallout or may have been decontaminated. Overall this review demonstrates that characterizing the different mechanisms and factors driving radiocesium transfer is important. In particular, the review determined that quantifying the remaining catchment radiocesium inventory allows for a relative comparison of radiocesium transfer research from hillslope to catchment scales. Further, owing to the variety of mechanisms and factors, a transdisciplinary approach is required involving geomorphologists, hydrologists, soil and forestry scientists, and mathematical modellers to comprehensively quantify radiocesium transfers and dynamics. Characterizing radiocesium transfers from hillslopes to the Pacific Ocean is necessary for ongoing decontamination and management interventions with the objective of reducing the gamma radiation exposure to the local population.


Asunto(s)
Radioisótopos de Cesio/análisis , Accidente Nuclear de Fukushima , Ceniza Radiactiva/análisis , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis , Japón , Modelos Teóricos , Océano Pacífico , Monitoreo de Radiación
16.
J Environ Radioact ; 147: 157-64, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26026933

RESUMEN

Large quantities of radiocesium were deposited across a 3000 km(2) area northwest of the Fukushima Dai-ichi nuclear power plant after the March 2011 accident. Although many studies have investigated the fate of (137)Cs in soil in the months following the accident, the depth distribution of this radioactive contaminant in rice paddy fields requires further examination after the typhoons that occurred in this region. Such investigations will help minimize potential human exposure in rice paddy fields. Radionuclide activity concentrations, organic content and particle size were analysed in 10 soil cores sampled from paddy fields in November 2013, 20 km north of the Fukushima power plant. Our results demonstrate limited depth migration of (137)Cs with the majority concentrated in the uppermost layers of soils (<5 cm). More than 30 months after the accident, between 46.8 and 98.7% of the total (137)Cs inventories was found within the top 5 cm of the soil surface, despite cumulative rainfall totalling 3300 mm. Furthermore, there were no significant correlations between (137)Cs depth distribution and the other parameters. We attributed the maximum depth penetration of (137)Cs to grass cutting (73.6-98.5% of (137)Cs in the upper 5 cm) and farming operations (tillage - 46.8-51.6% of (137)Cs in the upper 5 cm). As this area is exposed to erosive events, ongoing decontamination works may increase soil erodibility. We therefore recommend the rapid removal of the uppermost - contaminated - layer of the soil after removing the vegetation to avoid erosion of contaminated material during the subsequent rainfall events. Further analysis is required to thoroughly understand the impacts of erosion on the redistribution of radiocesium throughout the Fukushima Prefecture.


Asunto(s)
Radioisótopos de Cesio/análisis , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Suelo/química , Agricultura , Accidente Nuclear de Fukushima , Japón , Oryza/crecimiento & desarrollo
17.
Environ Sci Technol ; 48(16): 9334-40, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25014620

RESUMEN

The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident led to important releases of radionuclides into the environment, and trace levels of plutonium (Pu) were detected in northeastern Japan. However, measurements of Pu isotopic atom and activity ratios are required to differentiate between the contributions of global nuclear test fallout and FDNPP emissions. In this study, we used a double-focusing sector field ICP-MS to measure Pu atom and activity ratios in recently deposited sediment along rivers draining the most contaminated part of the inland radioactive plume. Results showed that plutonium isotopes (i.e., (239)Pu, (240)Pu, (241)Pu, and (242)Pu) were detected in all samples, although in extremely low concentrations. The (241)Pu/(239)Pu atom ratios measured in sediment deposits (0.0017-0.0884) were significantly higher than the corresponding values attributed to the global fallout (0.00113 ± 0.00008 on average for the Northern Hemisphere between 31°-71° N: Kelley, J. M.; Bond, L. A.; Beasley, T. M. Global distribution of Pu isotopes and (237)Np. Sci. Total. Env. 1999, 237/238, 483-500). The results indicated the presence of Pu from FDNPP, in slight excess compared to the Pu background from global fallout that represented up to ca. 60% of Pu in the analyzed samples. These results demonstrate that this radionuclide has been transported relatively long distances (∼45 km) from FDNPP and been deposited in rivers representing a potential source of Pu to the ocean. In future, the high (241)Pu/(239)Pu atom ratio of the Fukushima accident sourced-Pu should be measured to quantify the supply of continental-originating material from Fukushima Prefecture to the Pacific Ocean.


Asunto(s)
Accidente Nuclear de Fukushima , Plutonio/análisis , Monitoreo de Radiación , Ceniza Radiactiva/análisis , Ríos/química , Contaminantes Radiactivos del Agua/análisis , Japón , Plantas de Energía Nuclear , Océano Pacífico , Plutonio/química , Radioisótopos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA