Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int Microbiol ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236380

RESUMEN

The increase in global travel and the incorrect and excessive use of antibiotics has led to an unprecedented rise in antibiotic resistance in bacterial and fungal populations. To overcome these problems, novel bioactive natural products must be discovered, which may be found in underexplored environments, such as estuarine habitats. In the present work, estuarine actinomycetotal strains were isolated with conventional and iChip techniques from the Tagus estuary in Alcochete, Portugal, and analysed for different antimicrobial bioactivities. Extracts were produced from the isolated cultures and tested for bioactivity against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, Aspergillus fumigatus ATCC 240305, Candida albicans ATCC 10231 and Trichophyton rubrum FF5. Furthermore, bioactive extracts were subjected to dereplication by high-performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) to putatively identify their chemical components. In total, 105 isolates belonging to 3 genera were obtained. One which was isolated, MTZ3.1 T, represents a described novel taxon for which the name Streptomyces meridianus was proposed. Regarding the bioactivity testing, extracts from 12 strains proved to be active against S. aureus, 2 against E. coli, 4 against A. fumigatus, 3 against C. albicans and 10 against T. rubrum. Dereplication of bioactive extracts showed the presence of 28 known bioactive molecules, 35 hits have one or more possible matches in the DNP and 18 undescribed ones. These results showed that the isolated bacteria might be the source of new bioactive natural products.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38189368

RESUMEN

The oceans harbour a myriad of unknown micro-organisms that remain unstudied because of a failure to establish the right growth conditions under laboratory conditions. To overcome this limitation, an isolation effort inspired by the iChip was performed using marine sediments from Memória beach, Portugal. A novel strain, PMIC_1C1BT, was obtained and subjected to a polyphasic study. Cells of strain PMIC_1C1BT were Gram-positive, rod-shaped, divided by binary fission and formed colonies that were shiny light-yellow. Based on its full 16S rRNA gene sequence, strain PMIC_1C1BT was phylogenetically associated to the genus Microbacterium and its closest relatives were Microbacterium aurum KACC 15219T (98.55 %), Microbacterium diaminobutyricum RZ63T (98.48 %) and Microbacterium hatanonis JCM 14558T (98.13 %). Strain PMIC_1C1BT had a genome size of 2 761 607 bp with 67.71 mol% of G+C content and 2582 coding sequences, which is lower than the genus average. Strain PMIC_1C1BT grew from 15 to 30 °C, optimally at 25 °C, at pH 6.0 to 11.0, optimally between pH 6.0 and 8.0, and from 0 to 5 % (w/v) NaCl, optimally between 2.0 and 3.0 %. It grew with casamino acids, glutamine, methionine, N-acetylglucosamine, sodium nitrate, tryptophan, urea and valine as sole nitrogen sources, and arabinose and cellobiose as sole carbon sources. The major cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C17 : 0. Genome mining revealed the presence of four biosynthetic gene clusters (BGCs) with low similarities to other known BCGs. Based on the polyphasic data, strain PMIC_1C1BT is proposed to represent a novel species, for which the name Microbacterium memoriense sp. nov. (=CECT 30366T=LMG 32350T) is proposed.


Asunto(s)
Actinomycetales , Microbacterium , Portugal , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias
3.
Antonie Van Leeuwenhoek ; 116(11): 1209-1225, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37737556

RESUMEN

A bacterial strain was isolated from a brackish water sample of Tagus river, Alcochete, Portugal and was designated TO1_6T. It forms light pink colonies on M13 medium supplemented with N-acetylglucosamine. Cells are pear-shaped to spherical, form rosettes and divide by budding. Strain TO1_6T presents a mesophilic and neutrophilic profile, with optimum growth at 20 to 25 °C and pH 7.0 to 7.5, and vitamin supplementation is not required to promote its growth. The genome of the novel isolate is 7.77 Mbp in size and has a DNA G + C content of 56.3%. Based on its 16S rRNA gene sequence, this strain is affiliated with the phylum Planctomycetota. Further taxonomic characterization using additional phylogenetic markers, namely rpoB gene sequence (encoding the ß-subunit of the DNA-dependent RNA polymerase), as well as Percentage of conserved proteins, average nucleotide identity and average amino acid identity, suggest the affiliation of strain TO1_6T to the genus Stieleria, a recently described taxon in the family Pirellulaceae, order Pirellulales and class Planctomycetia. Based on the genotypic, phylogenetic and physiological characterization, we here describe a new species represented by the type strain TO1_6T (= CECT 30432T, = LMG 32465T), for which the name Stieleria tagensis sp. nov. is proposed.


Asunto(s)
Ácidos Grasos , Ríos , Ríos/microbiología , Ácidos Grasos/análisis , Fosfolípidos/análisis , Planctomicetos , Análisis de Secuencia de ADN , Filogenia , ARN Ribosómico 16S/genética , Portugal , ADN Bacteriano/genética , ADN Bacteriano/química , Técnicas de Tipificación Bacteriana
4.
Artículo en Inglés | MEDLINE | ID: mdl-37486346

RESUMEN

An isolation effort focused on sporogenous Actinomycetota from the Tagus estuary in Alcochete, Portugal, yielded a novel actinomycetal strain, designated MTZ3.1T, which was subjected to a polyphasic taxonomic study. MTZ3.1T is characterised by morphology typical of members of the genus Streptomyces, with light beige coloured substrate mycelium, which does not release pigments to the culture medium and with helicoidal aerial hyphae that differentiate into spores with a light-grey colour. The phylogeny of MTZ3.1T, based on the full 16S rRNA gene sequence, indicated that its closest relatives were Streptomyces alkaliterrae OF1T (98.48 %), Streptomyces chumphonensis KK1-2T (98.41 %), Streptomyces albofaciens JCM 4342T (98.34 %), Streoptomyces paromomycinus NBRC 15454T (98.34 %) and Streptomyces chrestomyceticus NRBC 13444T (98.34 %). Moreover, average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridisation (dDDH) are below the species cutoff values (ANI 67.70 and 68.35 %, AAI 77.06 and 76.71 % and dDDH 22.10 and 21.50 % for S. alkaliterrae OF1T and S. chumphonensis KK1-2T, respectively). Whole genome sequencing revealed that MTZ3.1T has a genome of 5 644 485 bp with a DNA G+C content of 71.29 mol% and 5044 coding sequences. Physiologically, MTZ3.1T is strictly aerobic, able to grow at 15-37 °C, optimally at 25 °C and between pH5 and 8 and showed high salinity tolerance, growing with 0-10 %(w/v) NaCl. Major cellular fatty acids are C15 : 0, iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. Furthermore, it was able to utilise a variety of nitrogen and carbon sources. Antimicrobial screening indicated that MTZ3.1T has potent anti-Staphylococcus aureus activity. On the basis of the polyphasic data, MTZ3.1T is proposed to represent a novel species, Streptomyces meridianus sp. nov. (= CECT 30416T = DSM 114037T=LMG 32463T).


Asunto(s)
Ácidos Grasos , Streptomyces , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Portugal , Estuarios , Análisis de Secuencia de ADN , Filogenia , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácido Diaminopimélico/química , Aguas Salinas , Fosfolípidos/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-37489568

RESUMEN

A novel actinomycetal strain, designated M600PL45_2T, was isolated from marine sediments obtained from Ingleses beach, Porto, on the Northern Coast of Portugal and was subjected to a polyphasic taxonomic characterisation study. The here described Gram-reaction-positive strain is characterised by the production of a brown pigment in both solid and liquid medium and forms typical helical hyphae that differentiate into smooth spores. The results of a phylogenetic analysis based on the 16S rRNA gene sequence indicated that M600PL45_2T has a high similarity to two members of the genus Streptomyces, Streptomyces bathyalis ASO4wetT (98.51 %) and Streptomyces daqingensis NEAU ZJC8T (98.44 %). The genome of M600PL45_2T has a size of 6 695 159 bp, a DNA G+C content of 70.71 mol% and 5538 coding sequences. M600PL45_2T grows at 15-37 °C and with a maximal growth rate between 25 °C and 30 °C. Growth at pH 6.0 to 9.0 with the optimal range between 6.0 and 7.5 was observed. M600PL45_2T showed a high salinity tolerance, growing with 0-10 % (w/v) NaCl, with best growth with 1-3% (w/v) NaCl. Major cellular fatty acids are iso-C15:0 (25.03 %), anteiso-C15:0 (17.70) and iso-C16:0 (26.90 %). The novel isolate was able to grow in media containing a variety of nitrogen and carbon sources. An antimicrobial activity screening indicated that an extract of M600PL45_2T has inhibitory activity against Staphylococcus aureus. On the basis of the polyphasic data, M600PL45_2T (= CECT 30365T = DSM 114036T) is introduced as the type strain of a novel species, that we named Streptomyces marispadix sp. nov.


Asunto(s)
Ácidos Grasos , Cloruro de Sodio , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Sedimentos Geológicos
6.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37309033

RESUMEN

Oysters are a highly valued seafood but can endanger public health, if they are eaten raw or barely cooked. We evaluated the microbiological quality of Pacific oysters (Magallana gigas) by international standard methods in four groups (each with four to five animals) acquired from supermarkets and directly from a farm producer. Most of the groups presented satisfactory microbiological quality. In two groups of oysters, 'questionable' or 'unsatisfactory' quality was observed for the coagulase-positive Staphylococcus parameter. Culture-based methods did not detect Salmonella spp. or enteropathogenic Vibrio spp., but Vibrio alginolyticus, a potential foodborne pathogen, was identified by molecular analysis. Fifty strains, belonging to 19 species, were isolated in antibiotic-supplemented media, and their antibiotic susceptibility profile was evaluated. Genes coding for ß-lactamases were searched by PCR in bacteria showing resistance phenotype. Decreased susceptibility or resistance to distinct antibiotics were observed for bacteria from depurated and non-depurated oysters. The blaTEM gene was identified in Escherichia fergusonii and Shigella dysenteriae strains, which showed multidrug-resistant phenotypes. The possibility that oysters might be a source of antibiotic-resistant bacteria/antibiotic resistance genes is of great concern and highlights the need for stricter controls and preventative measures to mitigate and counteract the dissemination of antibiotic resistance across the food chain.


Asunto(s)
Ostreidae , Vibrio , Animales , Antibacterianos/farmacología , Ostreidae/microbiología , beta-Lactamasas , Farmacorresistencia Microbiana
7.
Artículo en Inglés | MEDLINE | ID: mdl-37079347

RESUMEN

Organisms with distinctive biological features and cellular organization constitute the bacterial phylum Planctomycetota. In this study, we formally describe a novel isolate, strain ICT_H6.2T, isolated from sediment samples collected in the brackish environment of the Tagus River estuary (Portugal) using an iChip-based culturing technique. The 16S rRNA gene analysis placed this strain into the phylum Planctomycetota and family Lacipirellulaceae, with a similarity value of 98.0 % to its closest relative Aeoliella mucimassa Pan181T, the currently only known member of the genus. Strain ICT_H6.2T has a genome size of 7.8 Mbp and a DNA G+C content of 59.6 mol %. Strain ICT_H6.2T is heterotrophic, aerobic and capable of microaerobic growth. This strain grows from 10 to 37 °C and from pH 6.5 to 10.0, requires salt to grow, and can tolerate up to 4 % (w/v) NaCl. Diverse nitrogen and carbon sources are utilized for growth. Morphologically, strain ICT_H6.2T is white to beige pigmented, spherical to ovoid in shape and around 1.4×1.1 µm in size. The strain clusters mainly in aggregates and younger cells show motility. Ultrastructural studies showed a cell plan with cytoplasmatic membrane invaginations and unusual filamentous structures with hexagonal organization in transversal section. Morphological, physiological and genomic comparison between strain ICT_H6.2T and its closest relatives strongly suggests it represents a novel species within the genus Aeoliella, for which we propose the name Aeoliella straminimaris sp. nov., represented by strain ICT_H6.2T as the type strain (=CECT 30574T=DSM 114064T).


Asunto(s)
Ácidos Grasos , Planctomicetos , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana
8.
Microorganisms ; 10(11)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36363743

RESUMEN

The phylum Planctomycetota is known for having uncommon biological features. Recently, biotechnological applications of its members have started to be explored, namely in the genus Stieleria. Here, we formally describe a novel Stieleriaisolate designated as strain ICT_E10.1T, obtained from sediments collected in the Tagus estuary (Portugal). Strain ICT_E10.1T is pink-pigmented, spherical to ovoid in shape, and 1.7 µm ± 0.3 × 1.4 µm ± 0.3 in size. Cells cluster strongly in aggregates or small chains, divide by budding, and have prominent fimbriae. Strain ICT_E10.1T is heterotrophic and aerobic. Growth occurs from 20 to 30 °C, from 0.5 to 3% (w/v) NaCl, and from pH 6.5 to 11.0. The analysis of the 16S rRNA gene sequence placed strain ICT_E10.1T into the genus Stieleria with Stieleria neptunia Enr13T as the closest validly described relative. The genome size is 9,813,311 bp and the DNA G+C content is 58.8 mol%. Morphological, physiological, and genomic analyses support the separation of this strain into a novel species, for which we propose the name Stieleria sedimenti represented by strain ICT_E10.1T as the type of strain (=CECT 30514T= DSM 113784T). Furthermore, this isolate showed biotechnological potential by displaying relevant biosynthetic gene clusters and potent activity against Staphylococcus aureus.

9.
Syst Appl Microbiol ; 45(6): 126360, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36166947

RESUMEN

Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species. 16S rRNA gene accession number: GenBank = OK001858. Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.


Asunto(s)
Estuarios , Ríos , ARN Ribosómico 16S/genética , Ríos/microbiología , Portugal , ADN Bacteriano/genética , ADN Bacteriano/química , Filogenia , Análisis de Secuencia de ADN , Ácidos Grasos/análisis , Técnicas de Tipificación Bacteriana
10.
Microorganisms ; 10(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35889190

RESUMEN

Oceans hold a stunning number of unique microorganisms, which remain unstudied by culture-dependent methods due to failures in establishing the right conditions for these organisms to grow. In this work, an isolation effort inspired by the iChip was performed using marine sediments from Memoria beach, Portugal. The isolates obtained were identified by 16S rRNA gene analysis, fingerprinted using BOX-PCR and ERIC-PCR, searched for the putative presence of secondary metabolism genes associated with polyketide synthase I (PKS-I) and non-ribosomal peptide synthetases (NRPS), screened for antimicrobial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, and had bioactive extracts dereplicated by LC/HRMS. Of the 158 isolated strains, 96 were affiliated with the phylum Actinomycetota, PKS-I and NRPS genes were detected in 53 actinomycetotal strains, and 11 proved to be bioactive (10 against E. coli, 1 against S. aureus and 1 against both pathogens). Further bioactivities were explored using an "one strain many compounds" approach, with six strains showing continued bioactivity and one showing a novel one. Extract dereplication showed the presence of several known bioactive molecules and potential novel ones in the bioactive extracts. These results indicate the use of the bacteria isolated here as sources of new bioactive natural products.

11.
Artículo en Inglés | MEDLINE | ID: mdl-35687662

RESUMEN

The phylum Planctomycetota is constituted by bacteria with unique features that are well adapted to a vast range of habitats. Here, we describe a novel planctomycete isolated from marine sediments collected on a beach in Matosinhos (Portugal) using an iChip-based culturing technique. Strain ICM_H10T forms beige-coloured colonies in modified M14 medium and its cells are spherical to ovoid in shape, stalked, rosette-forming and showing motility in a phase of the life cycle. Transmission electron microscopy observations showed a typical planctomycetal cell plan and cell division by budding. This strain requires salt for growth and grows in the range of 2.0-5.0 % (w/v) NaCl, from 20 to 37 °C, within a pH of 6.0-9.0 and is able to use diverse nitrogen and carbon sources. It is heterotrophic, aerobic and capable of microaerobic growth. This strain has a genome size of approximately 6.0 Mb and a G+C content of 58.1 mol%. A 16S rRNA gene-based phylogenetic analysis supports the association of strain ICM_H10T to the phylum Planctomycetota and the family Planctomycetaceae, as it shares only 96.8 and 96.4% similarity to its closest relatives Rubinisphaera italica Pan54T and Rubinisphaera brasiliensis IFAM 1448T, respectively. Other phylogenetic markers also support the separation of this strain into a novel species. Morphological, physiological and genomic comparisons between strain ICM_H10T and its closest relatives strongly suggest that ICM_H10T represents a new species of the genus Rubinisphaera, for which we propose the name Rubinisphaera margarita sp. nov., with ICM_H10T (=CECT 30326T=LMG 32234T) as type strain.


Asunto(s)
Ácidos Grasos , Sedimentos Geológicos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Sedimentos Geológicos/microbiología , Filogenia , Portugal , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
FEMS Microbiol Ecol ; 98(7)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35709427

RESUMEN

The discovery of new bioactive compounds is an invaluable aid to the development of new drugs. Strategies for finding novel molecules can focus on the exploitation of less studied organisms and ecosystems such as planctomycetes and brackish habitats. The unique cell biology of the underexplored Planctomycetota mean it is of particular interest. In this study, we aimed to isolate planctomycetes from the estuary of the Tejo river (Portugal). To reach this goal, macroalgae, water and sediments were sampled and diverse media and isolation techniques applied. Sixty-nine planctomycetal strains were brought into pure culture. An analysis of the 16S rRNA genes found that the majority of the isolates were affiliated to the genus Rhodopirellula. Putative novel taxa belonging to genera Stieleria and Rhodopirellula were also isolated and characterized morphologically. Enterobacterial repetitive intergenic consensus fingerprinting analyses showed higher diversity and different genotypes within close strains. Relevant biosynthetic gene clusters were found in most isolates and acetone extracts from representative strains exhibited mild antimicrobial activities against Escherichia coli and Staphylococcus aureus. Our work has not only enlarged the number and diversity of cultured planctomycetes but has also shown the potential for the discovery of bioactive compounds from the novel taxa.


Asunto(s)
Antiinfecciosos , Planctomycetales , Antiinfecciosos/farmacología , Ecosistema , Estuarios , Filogenia , Planctomycetales/genética , Planctomicetos , Portugal , ARN Ribosómico 16S/genética , Ríos
14.
Antonie Van Leeuwenhoek ; 115(2): 169-201, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35037113

RESUMEN

The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.


Asunto(s)
Bacterias , Planctomicetos , Bacterias/genética , Proteínas Bacterianas/genética , Genómica , Filogenia
15.
Microorganisms ; 9(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34683399

RESUMEN

Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.

16.
Syst Appl Microbiol ; 44(3): 126189, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33852992

RESUMEN

A bacterial strain, designated FF15T, was isolated from the thallus surface of the macroalga Fucus spiralis sampled on a rocky beach in Porto, Portugal. Based on the 16S rRNA gene sequence, strain FF15T was affiliated to the phylum Planctomycetes. This strain forms white colonies on modified M13 medium and the cells are pear-shaped, can form rosettes, divide by polar budding and are motile. The novel isolate is mesophilic and neutrophilic with an optimum growth temperature of about 30 °C and an optimum pH for growth between 6.5 and 7.5. It showed growth over a broad range of salinities (0-9% NaCl - optimum at 1.5%). No additional vitamins are required for growth. It is cytochrome c oxidase and catalase positive. The major respiratory quinone was menaquinone 6 (MK-6). Genome sequencing revealed a genome size of 6.37 Mbp and a DNA G + C content of 54.2%. Analysis of phylogenetic markers, including similarities of the 16S rRNA gene sequence, rpoB gene sequence, as well as Percentage of Conserved Proteins (POCP), Average Nucleotide Identity (ANI) and Average Amino Acid Identity (AAI), suggest the affiliation of strain FF15T to "Bremerella", a recently described genus in the family Pirellulaceae. Based on the genotypic, phylogenetic, chemotaxonomic, physiological and biochemical characterization, we described a new species represented by strain FF15T (=CECT 8078T = LMG 31936T), for which we propose the name Bremerella alba snov.


Asunto(s)
Bacterias/clasificación , Fucus , Filogenia , Algas Marinas , Bacterias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Fucus/microbiología , Portugal , ARN Ribosómico 16S/genética , Algas Marinas/microbiología , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Antibiotics (Basel) ; 9(8)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731464

RESUMEN

Oceans cover seventy percent of the planet's surface and besides being an immense reservoir of biological life, they serve as vital sources for human sustenance, tourism, transport and commerce. Yet, it is estimated by the National Oceanic and Atmospheric Administration (NOAA) that eighty percent of the oceans remain unexplored. The untapped biological resources present in oceans may be fundamental in solving several of the world's public health crises of the 21st century, which span from the rise of antibiotic resistance in bacteria, pathogenic fungi and parasites, to the rise of cancer incidence and viral infection outbreaks. In this review, health risks as well as how marine bacterial derived natural products may be tools to fight them will be discussed. Moreover, an overview will be made of the research pipeline of novel molecules, from identification of bioactive bacterial crude extracts to the isolation and chemical characterization of the molecules within the framework of the One Health approach. This review highlights information that has been published since 2014, showing the current relevance of marine bacteria for the discovery of novel natural products.

18.
Environ Sci Pollut Res Int ; 27(35): 43958-43969, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32748361

RESUMEN

The effect of fungicides, commonly used in vine cultures, on the health of terrestrial and aquatic ecosystems has been poorly studied. The objective of this study was to evaluate the toxicity of three viticulture fungicides (myclobutanil, cymoxanil, and azoxystrobin) on non-target organisms, the bacteria Rhodopirellula rubra, Escherichia coli, Pseudomonas putida, and Arthrobacter sp., the microalgae Raphidocelis subcapitata, and the macrophyte Lemna minor. Fungicide toxicity was performed in acute cell viability assay for bacteria; 72-h and 7-day growth inhibition tests for R. subcapitata and L. minor, respectively. Contents of photosynthetic pigments and lipid peroxidation in L. minor were evaluated. Arthrobacter sp. and P. putida showed resistance to these fungicides. Even though azoxystrobin affected R. rubra and E. coli cell viability, this effect was due to the solvent used, acetone. Cell viability decrease was obtained for R. rubra exposed to cymoxanil and E. coli exposed to myclobutanil (30 min of exposure at 10 mg/L and 240 min of exposure at 46 mg/L, respectively). R. subcapitata showed about 10-fold higher sensitivity to azoxystrobin (EC50-72h = 0.25 mg/L) and cymoxanil (EC50-72h = 0.36 mg/L) than L. minor to azoxystrobin and myclobutanil (EC50-72h = 1.53 mg/L and EC50-72h = 1.89 mg/L, respectively). No lipid peroxidation was observed in L. minor after fungicide exposure, while changes of total chlorophyll were induced by azoxystrobin and myclobutanil. Our results showed that non-target aquatic organisms of different trophic levels are affected by fungicides used in viticulture.


Asunto(s)
Fungicidas Industriales , Ecosistema , Ecotoxicología , Escherichia coli , Fungicidas Industriales/análisis , Fungicidas Industriales/toxicidad , Planctomycetales
19.
Microorganisms ; 8(8)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751313

RESUMEN

Meromictic lakes are permanently stratified lakes that display steep gradients in salinity, oxygen and sulphur compounds tightly linked to bacterial community structure and diversity. Lake Sælenvannet is a meromictic lake located south of Bergen, Norway. The 26 m deep lake is connected to the open sea and permanently stratified into two layers separated by a chemocline. The upper water layer is brackish with major input from water runoff from the surroundings. The bottom layer consists of old saline water with low or no oxygen concentrations. Bacteria from phylum Planctomycetes are reported to be ubiquitous in lake environments. They are involved in the degradation of complex carbon sources in aquatic environments and are also linked to anaerobic processes such as fermentation and sulphur reduction. To study Planctomycete distribution along a chemical gradient, we sampled the water column throughout Lake Sælenvannet in 2012 and profiled the microbial community using 16S rRNA amplicon sequencing (metabarcoding) with 454 pyrosequencing. Planctomycete-related 16S rRNA gene sequences were found to be present both in the oxic and anoxic parts of the lake and showed an uneven distribution throughout the water column, with the highest relative abundance of 10% found in the saline anoxic layer at 15 m depth. In a follow-up study in 2014, samples from eight different depths were collected for enrichment and isolation of novel Planctomycetes. This study resulted in successful isolation in pure culture of 10 isolates affiliated to four different genera from the family Planctomycetaceae. One strain closely related to Blastopirellula cremea was isolated from 9 m depth, and two novel strains affiliated to the genera Stieleria and Gimesia were isolated at 7 and 9 m depths, respectively. Furthermore, seven isolates with identical 16S rRNA gene sequences were retrieved from seven different depths which varied greatly in salinity and chemical composition. These isolates likely represent a new species affiliated to Rubinisphaera. The adaptation of this novel Planctomycete to water depths spanning the entire chemical gradient could indicate a high phenotypic plasticity and/or a very efficient survival strategy. Overall, our results show the presence of a diverse group of Planctomycetes in Lake Sælenvannet, with a strong potential for novel adaptations to chemical stress factors.

20.
Syst Appl Microbiol ; 43(3): 126083, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32360272

RESUMEN

The phylum Planctomycetes comprises bacteria with peculiar and very unique characteristics among prokaryotes. In marine environments, macroalgae biofilms are well known for harboring planctomycetal diversity. Here, we describe a novel isolate obtained from the biofilm of the red alga Chondrus crispus collected at a rocky beach in Porto, Portugal. The novel strain LzC2T is motile, rosette-forming with spherical- to ovoid-shaped cells. LzC2T forms magenta- to pinkish-colored colonies in M13 and M14 media. Transmission and scanning electron microscopy observations showed a division by polar and lateral budding. Mother cells are connected to the daughter cells by a tubular neck-like structure. The strain requires salt for growth. Vitamins are not required for growth. Optimal growth occurs from 15 to 30°C and within a pH range from 5.5 to 10.0. Major fatty acids are anteiso-C15:0 (54.2%) and iso-C15:0 (19.5%). Phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid represent the main lipids and menaquinone 6 (MK-6) is the only quinone present. 16S rRNA gene-based phylogenetic analysis supports the affiliation to the phylum Planctomycetes and family Planctomycetaceae, with Alienimonas as the closest relative. Strain LzC2T shares 97% 16S rRNA gene sequence similarity with Alienimonas californiensis. LzC2T has a genome size of 5.3 Mb and a G+C content of 68.3%. Genotypic and phenotypic comparison with the closest relatives strongly suggest that LzC2T (=CECT 30038T=LMG XXXT) is a new species of the genus Alienimonas, for which we propose the name Alienimonas chondri sp. nov., represented by LzC2T as type strain. 16S rRNA gene accession number: GenBank=MN757873.1. Genome accession number: GenBank=WTPX00000000.


Asunto(s)
Biopelículas , Planctomycetales/clasificación , Planctomycetales/genética , Rhodophyta , Algas Marinas/clasificación , Algas Marinas/genética , Biopelículas/crecimiento & desarrollo , Ácidos Grasos/análisis , Ácidos Grasos/química , Genoma Bacteriano , Genómica/métodos , Filogenia , Planctomycetales/aislamiento & purificación , Planctomycetales/ultraestructura , ARN Ribosómico 16S/genética , Rhodophyta/crecimiento & desarrollo , Algas Marinas/aislamiento & purificación , Algas Marinas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA