Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Prog Neurobiol ; 234: 102564, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244975

RESUMEN

During development of the sensory cortex, the ascending innervation from deep to upper layers provides a temporary scaffold for the construction of other circuits that remain at adulthood. Whether an alteration in this sequence leads to brain dysfunction in neuro-developmental diseases remains unknown. Using functional approaches in a genetic model of Absence Epilepsy (GAERS), we investigated in barrel cortex, the site of seizure initiation, the maturation of excitatory and inhibitory innervations onto layer 2/3 pyramidal neurons and cell organization into neuronal assemblies. We found that cortical development in GAERS lacks the early surge of connections originating from deep layers observed at the end of the second postnatal week in normal rats and the concomitant structuring into multiple assemblies. Later on, at seizure onset (1 month old), excitatory neurons are hyper-excitable in GAERS when compared to Wistar rats. These findings suggest that early defects in the development of connectivity could promote this typical epileptic feature and/or its comorbidities.


Asunto(s)
Epilepsia Tipo Ausencia , Ratas , Animales , Epilepsia Tipo Ausencia/genética , Ratas Wistar , Neuronas/fisiología , Corteza Cerebral , Convulsiones
2.
Epilepsia ; 63(2): 497-509, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34919740

RESUMEN

OBJECTIVE: Epileptogenesis is the particular process during which the epileptic network builds up progressively before the onset of the first seizures. Whether physiological functions are impacted by this development of epilepsy remains unclear. To explore this question, we used Genetic Absence Epilepsy Rats From Strasbourg (GAERS), in which spike-and-wave discharges are initiated in the whisker primary somatosensory cortex (wS1) and first occur during cortical maturation. We studied the development of both the epileptic and the physiological wS1 circuits during cortical maturation to understand the interactions between them and the consequences for the animals' behavior. METHODS: In sedated and immobilized rat pups, we recorded in vivo epileptic and whisker sensory evoked activities across the wS1 and thalamus using multicontact electrodes. We compared sensory evoked potentials based on current source density analysis. We then analyzed the multiunit activities evoked by whisker stimulation in GAERS and control rats. Finally, we evaluated behavioral performance dependent on the functionality of the wS1 cortex using the gap-crossing task. RESULTS: We showed that the epileptic circuit changed during the epileptogenesis period in GAERS, by involving different cortical layers of wS1. Neuronal activities evoked by whisker stimulation were reduced in the wS1 cortex at P15 and P30 in GAERS but increased in the ventral posteromedial nucleus of the thalamus at P15 and in the posterior medial nucleus at P30, when compared to control rats. Finally, we observed lower performance in GAERS versus controls, at both P15 and P30, in a whisker-mediated behavioral task. SIGNIFICANCE: Our data show that the functionality of wS1 cortex and thalamus is altered early during absence epileptogenesis in GAERS and then evolves before spike-and-wave discharges are fully expressed. They suggest that the development of the pathological circuit disturbs the physiological one and may be responsible for both the emergence of seizures and associated comorbidities.


Asunto(s)
Epilepsia Tipo Ausencia , Vibrisas , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/patología , Neuronas/patología , Ratas , Convulsiones
3.
J Physiol ; 597(3): 951-966, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548850

RESUMEN

KEY POINTS: Absence epilepsy is characterized by the occurrence of spike-and-wave discharges concomitant with an alteration of consciousness and is associated with cognitive comorbidities. In a genetic model of absence epilepsy in the rat, the genetic absence epilepsy rat from Strasbourg (GAERS), spike-and-wave discharges are shown to be initiated in the barrel field primary somatosensory cortex that codes whisker-related information, therefore playing an essential role in the interactions of rodents with their environment. Sensory-information processing is impaired in the epileptic barrel field primary somatosensory cortex of GAERS, with a delayed sensory-evoked potential and a duplicated neuronal response to whisker stimulation in in vivo extracellular recordings. Yet, GAERS present no defaults of performance in a texture discrimination task, suggesting the existence of a compensatory mechanism within the epileptic neuronal network. The results of the present study indicate that physiological primary functions are processed differently in an epileptic cortical network. ABSTRACT: Several neurodevelopmental pathologies are associated with disorganized cortical circuits that may alter primary functions such as sensory processes. In the present study, we investigated whether the function of a cortical area is altered in the seizure onset zone of absence epilepsy, a prototypical form of childhood genetic epilepsy associated with cognitive impairments. We first combined in vivo multichannel electrophysiological recordings and histology to precisely localize the seizure onset zone in the genetic absence epilepsy rat from Strasbourg (GAERS). We then investigated the functionality of this epileptic zone using extracellular silicon probe recordings of sensory-evoked local field potentials and multi-unit activity, as well as a behavioural test of texture discrimination. We show that seizures in this model are initiated in the barrel field part of the primary somatosensory cortex and are associated with high-frequency oscillations. In this cortex, we found an increased density of parvalbumin-expressing interneurons in layer 5 in GAERS compared to non-epileptic Wistar rats. Its functional investigation revealed that sensory abilities of GAERS are not affected in a texture-discrimination task, whereas the intracortical processing of sensory-evoked information is delayed and duplicated. Altogether, these results suggest that absence seizures are associated with an increase of parvalbumin-inhibitory neurons, which may promote the functional relationship between epileptic oscillations and high-frequency activities. Our findings suggest that cortical circuits operate differently in the epileptic onset zone and may adapt to maintain their ability to process highly specialized information.


Asunto(s)
Epilepsia Tipo Ausencia/fisiopatología , Corteza Somatosensorial/fisiopatología , Animales , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/metabolismo , Potenciales Evocados/fisiología , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Parvalbúminas/metabolismo , Ratas , Ratas Wistar , Convulsiones/metabolismo , Convulsiones/fisiopatología , Corteza Somatosensorial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA