Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plants (Basel) ; 12(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37653881

RESUMEN

Nitrogen is an essential element needed for plants to survive, and legumes are well known to recruit rhizobia to fix atmospheric nitrogen. In this widely studied symbiosis, legumes develop specific structures on the roots to host specific symbionts. This review explores alternate nodule structures and their functions outside of the more widely studied legume-rhizobial symbiosis, as well as discussing other unusual aspects of nodulation. This includes actinorhizal-Frankia, cycad-cyanobacteria, and the non-legume Parasponia andersonii-rhizobia symbioses. Nodules are also not restricted to the roots, either, with examples found within stems and leaves. Recent research has shown that legume-rhizobia nodulation brings a great many other benefits, some direct and some indirect. Rhizobial symbiosis can lead to modifications in other pathways, including the priming of defence responses, and to modulated or enhanced resistance to biotic and abiotic stress. With so many avenues to explore, this review discusses recent discoveries and highlights future directions in the study of nodulation.

2.
Microbiome ; 11(1): 146, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394496

RESUMEN

BACKGROUND: Despite the knowledge that the soil-plant-microbiome nexus is shaped by interactions amongst its members, very little is known about how individual symbioses regulate this shaping. Even less is known about how the agriculturally important symbiosis of nitrogen-fixing rhizobia with legumes is impacted according to soil type, yet this knowledge is crucial if we are to harness or improve it. We asked how the plant, soil and microbiome are modulated by symbiosis between the model legume Medicago truncatula and different strains of Sinorhizobium meliloti or Sinorhizobium medicae whose nitrogen-fixing efficiency varies, in three distinct soil types that differ in nutrient fertility, to examine the role of the soil environment upon the plant-microbe interaction during nodulation. RESULTS: The outcome of symbiosis results in installment of a potentially beneficial microbiome that leads to increased nutrient uptake that is not simply proportional to soil nutrient abundance. A number of soil edaphic factors including Zn and Mo, and not just the classical N/P/K nutrients, group with microbial community changes, and alterations in the microbiome can be seen across different soil fertility types. Root endosphere emerged as the plant microhabitat more affected by this rhizobial efficiency-driven community reshaping, manifested by the accumulation of members of the phylum Actinobacteria. The plant in turn plays an active role in regulating its root community, including sanctioning low nitrogen efficiency rhizobial strains, leading to nodule senescence in particular plant-soil-rhizobia strain combinations. CONCLUSIONS: The microbiome-soil-rhizobial dynamic strongly influences plant nutrient uptake and growth, with the endosphere and rhizosphere shaped differentially according to plant-rhizobial interactions with strains that vary in nitrogen-fixing efficiency levels. These results open up the possibility to select inoculation partners best suited for plant, soil type and microbial community. Video Abstract.


Asunto(s)
Medicago truncatula , Rhizobium , Sinorhizobium meliloti , Fijación del Nitrógeno/fisiología , Medicago truncatula/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis/fisiología
3.
Physiol Plant ; 174(2): e13681, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35362177

RESUMEN

Strigolactones (SLs) are the most recently discovered phytohormones, and their roles in root architecture and metabolism are not fully understood. Here, we investigated four MORE AXILLARY GROWTH (MAX) SL mutants in Arabidopsis thaliana, max3-9, max4-1, max1-1 and max2-1, as well as the SL receptor mutant d14-1 and karrikin receptor mutant kai2-2. By characterising max2-1 and max4-1, we found that variation in SL biosynthesis modified multiple metabolic pathways in root tissue, including that of xyloglucan, triterpenoids, fatty acids and flavonoids. The transcription of key flavonoid biosynthetic genes, including TRANSPARENT TESTA4 (TT4) and TRANSPARENT TESTA5 (TT5) was downregulated in max2 roots and seedlings, indicating that the proposed MAX2 regulation of flavonoid biosynthesis has a widespread effect. We found an enrichment of BRI1-EMS-SUPPRESSOR 1 (BES1) targets amongst genes specifically altered in the max2 mutant, reflecting that the regulation of flavonoid biosynthesis likely occurs through the MAX2 degradation of BES1, a key brassinosteroid-related transcription factor. Finally, flavonoid accumulation decreased in max2-1 roots, supporting a role for MAX2 in regulating both SL and flavonoid biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Compuestos Heterocíclicos con 3 Anillos , Lactonas/metabolismo
4.
J Exp Bot ; 73(7): 2142-2156, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-34850882

RESUMEN

Legumes house nitrogen-fixing endosymbiotic rhizobia in specialized polyploid cells within root nodules, which undergo tightly regulated metabolic activity. By carrying out expression analysis of transcripts over time in Medicago truncatula nodules, we found that the circadian clock enables coordinated control of metabolic and regulatory processes linked to nitrogen fixation. This involves the circadian clock-associated transcription factor LATE ELONGATED HYPOCOTYL (LHY), with lhy mutants being affected in nodulation. Rhythmic transcripts in root nodules include a subset of nodule-specific cysteine-rich peptides (NCRs) that have the LHY-bound conserved evening element in their promoters. Until now, studies have suggested that NCRs act to regulate bacteroid differentiation and keep the rhizobial population in check. However, these conclusions came from the study of a few members of this very large gene family that has complex diversified spatio-temporal expression. We suggest that rhythmic expression of NCRs may be important for temporal coordination of bacterial activity with the rhythms of the plant host, in order to ensure optimal symbiosis.


Asunto(s)
Relojes Circadianos , Medicago truncatula , Sinorhizobium meliloti , Cisteína/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Fijación del Nitrógeno/fisiología , Péptidos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis
5.
Microorganisms ; 9(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34946030

RESUMEN

Here, we report an improved and complete genome sequence of Sinorhizobium (Ensifer) meliloti strain WSM1022, a microsymbiont of Medicago species, revealing its tripartite structure. This improved genome sequence was generated combining Illumina and Oxford nanopore sequencing technologies to better understand the symbiotic properties of the bacterium. The 6.75 Mb WSM1022 genome consists of three scaffolds, corresponding to a chromosome (3.70 Mb) and the pSymA (1.38 Mb) and pSymB (1.66 Mb) megaplasmids. The assembly has an average GC content of 62.2% and a mean coverage of 77X. Genome annotation of WSM1022 predicted 6058 protein coding sequences (CDSs), 202 pseudogenes, 9 rRNAs (3 each of 5S, 16S, and 23S), 55 tRNAs, and 4 ncRNAs. We compared the genome of WSM1022 to two other rhizobial strains, closely related Sinorhizobium (Ensifer) meliloti Sm1021 and Sinorhizobium (Ensifer) medicae WSM419. Both WSM1022 and WSM419 species are high-efficiency rhizobial strains when in symbiosis with Medicago truncatula, whereas Sm1021 is ineffective. Our findings report significant genomic differences across the three strains with some similarities between the meliloti strains and some others between the high efficiency strains WSM1022 and WSM419. The addition of this high-quality rhizobial genome sequence in conjunction with comparative analyses will help to unravel the features that make a rhizobial symbiont highly efficient for nitrogen fixation.

7.
Front Microbiol ; 11: 585749, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329456

RESUMEN

Leguminous plants possess the almost unique ability to enter symbiosis with soil-resident, nitrogen fixing bacteria called rhizobia. During this symbiosis, the bacteria physically colonize specialized organs on the roots of the host plant called nodules, where they reduce atmospheric nitrogen into forms that can be assimilated by the host plant and receive photosynthates in return. In order for nodule development to occur, there is extensive chemical cross-talk between both parties during the formative stages of the symbiosis. The vast majority of the legume family are capable of forming root nodules and typically rhizobia are only able to fix nitrogen within the context of this symbiotic association. However, many legume species only enter productive symbiosis with a few, or even single rhizobial species or strains, and vice-versa. Permitting symbiosis with only rhizobial strains that will be able to fix nitrogen with high efficiency is a crucial strategy for the host plant to prevent cheating by rhizobia. This selectivity is enforced at all stages of the symbiosis, with partner choice beginning during the initial communication between the plant and rhizobia. However, it can also be influenced even once nitrogen-fixing nodules have developed on the root. This review sets out current knowledge about the molecular mechanisms employed by both parties to influence host range during legume-rhizobia symbiosis.

8.
Genes (Basel) ; 11(4)2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218172

RESUMEN

Legume-rhizobium symbiosis represents one of the most successfully co-evolved mutualisms. Within nodules, the bacterial cells undergo distinct metabolic and morphological changes and differentiate into nitrogen-fixing bacteroids. Legumes in the inverted repeat lacking clade (IRLC) employ an array of defensin-like small secreted peptides (SSPs), known as nodule-specific cysteine-rich (NCR) peptides, to regulate bacteroid differentiation and activity. While most NCRs exhibit bactericidal effects in vitro, studies confirm that inside nodules they target the bacterial cell cycle and other cellular pathways to control and extend rhizobial differentiation into an irreversible (or terminal) state where the host gains control over bacteroids. While NCRs are well established as positive regulators of effective symbiosis, more recent findings also suggest that NCRs affect partner compatibility. The extent of bacterial differentiation has been linked to species-specific size and complexity of the NCR gene family that varies even among closely related species, suggesting a more recent origin of NCRs followed by rapid expansion in certain species. NCRs have diversified functionally, as well as in their expression patterns and responsiveness, likely driving further functional specialisation. In this review, we evaluate the functions of NCR peptides and their role as a driving force underlying the outcome of rhizobial symbiosis, where the plant is able to determine the outcome of rhizobial interaction in a temporal and spatial manner.


Asunto(s)
Cisteína/química , Medicago truncatula/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas de Plantas/metabolismo , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/microbiología , Nódulos de las Raíces de las Plantas/microbiología
10.
Mol Plant ; 12(6): 833-846, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30953787

RESUMEN

Understanding how plants respond to nitrogen in their environment is crucial for determining how they use it and how the nitrogen use affects other processes related to plant growth and development. Under nitrogen limitation the activity and affinity of uptake systems is increased in roots, and lateral root formation is regulated in order to adapt to low nitrogen levels and scavenge from the soil. Plants in the legume family can form associations with rhizobial nitrogen-fixing bacteria, and this association is tightly regulated by nitrogen levels. The effect of nitrogen on nodulation has been extensively investigated, but the effects of nodulation on plant nitrogen responses remain largely unclear. In this study, we integrated molecular and phenotypic data in the legume Medicago truncatula and determined that genes controlling nitrogen influx are differently expressed depending on whether plants are mock or rhizobia inoculated. We found that a functional autoregulation of nodulation pathway is required for roots to perceive, take up, and mobilize nitrogen as well as for normal root development. Our results together revealed that autoregulation of nodulation, root development, and the location of nitrogen are processes balanced by the whole plant system as part of a resource-partitioning mechanism.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Nitrógeno/metabolismo , Rhizobium/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis/fisiología
11.
Plant Cell Physiol ; 60(5): 1025-1040, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30690505

RESUMEN

To overcome the difficulties to analyze membrane desaturases at the protein level, transgenic Arabidopsis plants expressing the plastidial AtFAD7 and AtFAD8 ω-3 desaturases fused to green fluorescent protein, under the control of their endogenous promoters, were generated and their tissue relative abundance was studied. Gene expression, glucuronidase promoter activity, immunoblot and confocal microscopy analyses indicated that AtFAD7 is the major ω-3 desaturase in leaves when compared to AtFAD8. This higher abundance of AtFAD7 was consistent with its higher promoter activity and could be related with its specificity for the abundant leaf galactolipids. AtFAD7 was also present in roots but at much lower level than leaves. AtFAD8 expression and protein abundance in leaves was consistent with its lower promoter activity, suggesting that transcriptional control modulates the abundance of both desaturases in leaves. AtFAD7 protein levels increased in response to wounding but not to jasmonate (JA), and decreased upon abscisic acid (ABA) treatment. Conversely, AtFAD8 protein levels increased upon cold or JA exposure and decreased at high temperatures, but did not respond to ABA or wounding. These results indicated specific and non-redundant roles for the plastidial ω-3 desaturases in defense, temperature stress or phytohormone mediated responses and a tight coordination of their activities between biotic and abiotic stress signaling pathways. Our data suggested that transcriptional regulation was crucial for this coordination. Finally, bimolecular fluorescence complementation analysis showed that both AtFAD7 and AtFAD8 interact with the AtFAD6 ω-6 desaturase in vivo, suggesting that quaternary complexes are involved in trienoic fatty acid production within the plastid membranes.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Ciclopentanos/farmacología , Ácido Graso Desaturasas/metabolismo , Oxilipinas/farmacología , Plastidios/efectos de los fármacos , Plastidios/metabolismo , Arabidopsis/fisiología , Frío , Plastidios/fisiología
12.
Front Plant Sci ; 9: 1205, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174681

RESUMEN

We face major agricultural challenges that remain a threat for global food security. Soil microbes harbor enormous potentials to provide sustainable and economically favorable solutions that could introduce novel approaches to improve agricultural practices and, hence, crop productivity. In this review we give an overview regarding the current state-of-the-art of microbiome research by discussing new technologies and approaches. We also provide insights into fundamental microbiome research that aim to provide a deeper understanding of the dynamics within microbial communities, as well as their interactions with different plant hosts and the environment. We aim to connect all these approaches with potential applications and reflect how we can use microbial communities in modern agricultural systems to realize a more customized and sustainable use of valuable resources (e.g., soil).

13.
Methods Mol Biol ; 1761: 165-175, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29525956

RESUMEN

Cell type-specific marker lines expressing fluorophores such as GFP or GUS can be used as starting material from which single cell types can be isolated by fluorescence-activated cell sorting (FACS) and/or for the study of root development. Establishing the stability of these lines is an essential step prior to further study to ensure that marker expression and localization is stable over time and during environmental perturbations of interest to researchers applying these lines as treatments. Here, we detail the use of root cross sectioning to investigate marker expression throughout the length and width of the root using the model legume Medicago truncatula as an example. In order to deal with the fact that plant cell walls are highly autofluorescent, we also describe the usage of confocal microscopy to conduct a lambda scan to discriminate autofluorescence from marker molecule expression.


Asunto(s)
Citometría de Flujo , Expresión Génica , Genes Reporteros , Histocitoquímica , Desarrollo de la Planta , Raíces de Plantas/citología , Raíces de Plantas/genética , Microscopía Confocal , Especificidad de Órganos , Desarrollo de la Planta/genética , Raíces de Plantas/metabolismo
14.
Mol Plant ; 8(11): 1599-611, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26079601

RESUMEN

Plastidial ω-3 desaturase FAD7 is a major contributor to trienoic fatty acid biosynthesis in the leaves of Arabidopsis plants. However, the precise contribution of the other plastidial ω-3 desaturase, FAD8, is poorly understood. Fatty acid and lipid analysis of several ω-3 desaturase mutants, including two insertion lines of AtFAD7 and AtFAD8, showed that FAD8 partially compensated the disruption of the AtFAD7 gene at 22 °C, indicating that FAD8 was active at this growth temperature, contrasting to previous observations that circumscribed the FAD8 activity at low temperatures. Our data revealed that FAD8 had a higher selectivity for 18:2 acyl-lipid substrates and a higher preference for lipids other than galactolipids, particularly phosphatidylglycerol, at any of the temperatures studied. Differences in the mechanism controlling AtFAD7 and AtFAD8 gene expression at different temperatures were also detected. Confocal microscopy and biochemical analysis of FAD8-YFP over-expressing lines confirmed the chloroplast envelope localization of FAD8. Co-localization experiments suggested that FAD8 and FAD7 might be located in close vicinity in the envelope membrane. FAD8-YFP over-expressing lines showed a specific increase in 18:3 fatty acids at 22 °C. Together, these results indicate that the function of both plastidial ω-3 desaturases is coordinated in a non-redundant manner.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Graso Desaturasas/genética , Glicéridos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Graso Desaturasas/metabolismo , Galactolípidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfolípidos/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Temperatura
15.
Phytochemistry ; 95: 158-67, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23928132

RESUMEN

We analyzed the molecular mechanism controlling ω-3 fatty acid desaturases during seed germination and leaf development in soybean. During germination, soybean seeds were characterized by a high 18:2(Δ9,12) level (more than 50%) and reduced 18:3(Δ9,12,15) content (10%). Interestingly, transcripts from all endoplasmic reticulum (GmFAD3A and GmFAD3B) and plastidial (GmFAD7-1/GmFAD7-2 or GmFAD8-1/GmFAD8-2) desaturase genes were detected during seed germination. Upon germination, soybean trifoliate leaf development was accompanied by an increase in linolenic acid (18:3(Δ9,12,15)). Our data showed that transcripts corresponding to the endoplasmic reticulum ω-3 desaturases GmFAD3A and GmFAD3B decreased with leaf development. No changes in the expression profile of the plastidial ω-3 desaturases GmFAD7-1 and GmFAD7-2 genes were detected. On the contrary, GmFAD8-2 transcript levels increased while GmFAD8-1 transcripts decreased during leaf development. Given this expression profile, our data suggested the existence of a temporal regulatory mechanism controlling ω-3 desaturases during leaf development in which the endoplasmic reticulum ω-3 desaturases would be more important in young leaves while plastidial ω-3 desaturases might contribute to 18:3(Δ9,12,15) production in mature leaves. Photosynthetic cell cultures showed 18:3(Δ9,12,15) levels similar to those from leaves. No changes in the 18:3(Δ9,12,15) content or expression of the ω-3 desaturase genes were detected along the cell culture cycle. A comparison of our data with those available in Arabidopsis or wheat suggested that the regulatory mechanism controlling the expression and activity of both endoplasmic reticulum and plastidial desaturases during leaf development might differ among plant species.


Asunto(s)
Retículo Endoplásmico/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Hojas de la Planta/crecimiento & desarrollo , Plastidios/genética , Arabidopsis/genética , Técnicas de Cultivo de Célula , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Ácido Graso Desaturasas/metabolismo , Genes de Plantas , Germinación , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/enzimología , Plastidios/metabolismo , Semillas/crecimiento & desarrollo , Glycine max/enzimología , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Triticum/genética , Ácido alfa-Linolénico/metabolismo
16.
J Exp Bot ; 63(13): 4973-82, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22865909

RESUMEN

This study analysed the contribution of each omega-3 desaturase to the cold response in soybean. Exposure to cold temperatures (5 °C) did not result in great modifications of the linolenic acid content in leaf membrane lipids. However, an increase in the GmFAD3A transcripts was observed both in plant leaves and soybean cells whereas no changes in GmFAD3B or GmFAD3C expression levels were detected. This increase was reversible and accompanied by the accumulation of an mRNA encoding a truncated form of GmFAD3A (GmFAD3A-T), which originated from alternative splicing of GmFAD3A in response to cold. When the expression of plastidial omega-3 desaturases was analysed, a transient accumulation of GmFAD7-2 mRNA was detected upon cold exposure in mature soybean trifoliate leaves while GmFAD7-1 transcripts remained unchanged. No modification of the GmFAD8-1 and GmFAD8-2 transcripts was observed. The functionality of GmFAD3A, GmFAD3B, GmFAD3C and GmFAD3A-T was examined by heterologous expression in yeast. No activity was detected with GmFAD3A-T, consistent with the absence of one of the His boxes necessary for desaturase activity. The linolenic acid content of Sacharomyces cerevisiae cells overexpressing GmFAD3A or GmFAD3B was higher when the cultures were incubated at cooler temperatures, suggesting that reticular desaturases of the GmFAD3 family, and more specifically GmFAD3A, may play a role in the cold response, even in leaves. The data point to a regulatory mechanism of omega-3 fatty acid desaturases in soybean affecting specific isoforms in both the plastid and the endoplasmic reticulum to maintain appropriate levels of linolenic acid under low temperature conditions.


Asunto(s)
Aclimatación/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Glycine max/enzimología , Empalme Alternativo , Secuencia de Aminoácidos , Técnicas de Cultivo de Célula , Frío , Retículo Endoplásmico/enzimología , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/análisis , Hidroponía , Isoenzimas , Datos de Secuencia Molecular , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/enzimología , ARN Mensajero/genética , ARN de Planta/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Glycine max/genética , Glycine max/fisiología , Ácido alfa-Linolénico/análisis , Ácido alfa-Linolénico/metabolismo
17.
J Exp Bot ; 61(12): 3371-84, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20547564

RESUMEN

The FAD7 gene encodes a omega3 fatty acid desaturase which catalyses the production of trienoic fatty acids (TAs) in plant chloroplasts. A novel GmFAD7 gene (named GmFAD7-2) has been identified in soybean, with high homology to the previously annotated GmFAD7 gene. Genomic sequencing analysis together with searches at the soybean genome database further confirmed that both GmFAD7 genes were located in two different loci within the soybean genome, suggesting that the soybean omega3 plastidial desaturase FAD7 is encoded by two different paralogous genes. Both GmFAD7-1 and GmFAD7-2 genes were expressed in all soybean tissues examined, displaying their highest mRNA accumulation in leaves. This expression profile contrasted with GmFAD3A and GmFAD3B mRNA accumulation, which was very low in this tissue. These results suggested a concerted control of plastidial and reticular omega3 desaturase gene expression in soybean mature leaves. Analysis of GmFAD7 protein distribution in different soybean tissues showed that, in mature leaves, two bands were detected, coincident with the higher expression level of both GmFAD7 genes and the highest 18:3 fatty acid accumulation. By contrast, in seeds, where FAD7 activity is low, specific GmFAD7 protein conformations were observed. These GmFAD7 protein conformations were affected in vitro by changes in the redox conditions of thiol groups and iron availability. These results suggest the existence of tissue-specific post-translational regulatory mechanisms affecting the distribution and conformation of the FAD7 enzymes related with the control of its activity.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Glycine max/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Cloroplastos/enzimología , Cloroplastos/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Análisis de Secuencia de Proteína , Glycine max/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA