Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gut Microbes ; 16(1): 2340486, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659243

RESUMEN

Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is a significant threat to public health worldwide. The primary reservoir for CR-Kp is the intestinal tract. There, the bacterium is usually present at low density but can bloom following antibiotic treatment, mostly in hospital settings. The impact of disturbances in the intestinal environment on the fitness, survival, expansion, and drug susceptibility of this pathogen is not well-understood, yet it may be relevant to devise strategies to tackle CR-Kp colonization and infection. Here, we adopted an in vivo model to examine the transcriptional adaptation of a CR-Kp clinical isolate to immune activation in the intestine. We report that as early as 6 hours following host treatment with anti-CD3 antibody, CR-Kp underwent rapid transcriptional changes including downregulation of genes involved in sugar utilization and amino acid biosynthesis and upregulation of genes involved in amino acid uptake and catabolism, antibiotic resistance, and stress response. In agreement with these findings, treatment increased the concentration of oxidative species and amino acids in the mouse intestine. Genes encoding for proteins containing the domain of unknown function (DUF) 1471 were strongly upregulated, however their deletion did not impair CR-Kp fitness in vivo upon immune activation. Transcription factor enrichment analysis identified the global regulator cAMP-Receptor Protein, CRP, as a potential orchestrator of the observed transcriptional signature. In keeping with the recognized role of CRP in regulating utilization of alternative carbon sources, crp deletion in CR-Kp resulted in strongly impaired gut colonization, although this effect was not amplified by immune activation. Thus, following intestinal colonization, which occurs in a CRP-dependent manner, CR-Kp can rapidly respond to immune cues by implementing a well-defined and complex transcriptional program whose direct relevance toward bacterial fitness warrants further investigation. Additional analyses utilizing this model may identify key factors to tackle CR-Kp colonization of the intestine.


Asunto(s)
Antibacterianos , Intestinos , Infecciones por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/inmunología , Animales , Ratones , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/inmunología , Intestinos/microbiología , Intestinos/inmunología , Antibacterianos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Regulación Bacteriana de la Expresión Génica , Carbapenémicos/farmacología , Ratones Endogámicos C57BL , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Humanos
2.
Artículo en Inglés | MEDLINE | ID: mdl-37797823

RESUMEN

BACKGROUND: Mycobacterium abscessus belongs to the largest group of mycobacteria, the rapid-growing saprophytic mycobacteria, and is one of the most difficult-to-treat opportunistic pathogen. Several features pertain to the high adaptability of M. abscessus to the host. These include the capacity to survive and persist within amoebae, to transition from a smooth to a rough morphotype that occurs during the course of the disease and to express of a wide array of virulence factors. OBJECTIVES: The main objective of this narrative review consists to report major assets of M. abscessus that contribute to the virulence of these rapid-growing saprophytic mycobacteria. Strikingly, many of these determinants, whether they are from a mycobacterial origin or acquired by horizontal gene transfer, are known virulence factors found in slow-growing and strict pathogens for humans and animals. SOURCES: In the light of recent published work in the field we attempted to highlight major features characterizing M. abscessus pathogenicity and to explain why this led to the emergence of this mycobacterial species in patients with cystic fibrosis. CONTENT: M. abscessus genome plasticity, the smooth-to-rough transition, and the expression of a panel of enzymes associated with virulence in other bacteria are key players in M. abscessus virulence. In addition, the very large repertoire of lipid transporters, known as mycobacterial membrane protein large and small (MmpL and MmpS respectively), deeply influences the pathogenicity of M. abscessus, as exemplified here for some of them. IMPLICATIONS: All these traits largely contribute to make M. abscessus a unique mycobacterium regarding to its pathophysiological processes, ranging from the early colonization steps to the establishment of severe and chronic pulmonary diseases.

3.
PLoS Pathog ; 19(3): e1011257, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972320

RESUMEN

Mycobacterium abscessus is the most pathogenic species among the predominantly saprophytic fast-growing mycobacteria. This opportunistic human pathogen causes severe infections that are difficult to eradicate. Its ability to survive within the host was described mainly with the rough (R) form of M. abscessus, which is lethal in several animal models. This R form is not present at the very beginning of the disease but appears during the progression and the exacerbation of the mycobacterial infection, by transition from a smooth (S) form. However, we do not know how the S form of M. abscessus colonizes and infects the host to then multiply and cause the disease. In this work, we were able to show the hypersensitivity of fruit flies, Drosophila melanogaster, to intrathoracic infections by the S and R forms of M. abscessus. This allowed us to unravel how the S form resists the innate immune response developed by the fly, both the antimicrobial peptides- and cellular-dependent immune responses. We demonstrate that intracellular M. abscessus was not killed within the infected phagocytic cells, by resisting lysis and caspase-dependent apoptotic cell death of Drosophila infected phagocytes. In mice, in a similar manner, intra-macrophage M. abscessus was not killed when M. abscessus-infected macrophages were lysed by autologous natural killer cells. These results demonstrate the propensity of the S form of M. abscessus to resist the host's innate responses to colonize and multiply within the host.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Infecciones por Mycobacterium , Mycobacterium abscessus , Mycobacterium , Animales , Humanos , Ratones , Drosophila melanogaster , Fagocitos/patología , Infecciones por Mycobacterium/microbiología , Drosophila , Infecciones por Mycobacterium no Tuberculosas/microbiología
4.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555720

RESUMEN

Establishing the rapid and accurate diagnosis of sepsis is a key component to the improvement of clinical outcomes. The ability of analytical platforms to rapidly detect pathogen-associated molecular patterns (PAMP) in blood could provide a powerful host-independent biomarker of sepsis. A novel concept was investigated based on the idea that a pre-bound and fluorescent ligand could be released from lectins in contact with high-affinity ligands (such as PAMPs). To create fluorescent ligands with precise avidity, the kinetically followed TEMPO oxidation of yeast mannan and carbodiimide coupling were used. The chemical modifications led to decreases in avidity between mannan and human collectins, such as the mannan-binding lectin (MBL) and human surfactant protein D (SP-D), but not in porcine SP-D. Despite this effect, these fluorescent derivatives were captured by human lectins using highly concentrated solutions. The resulting fluorescent beads were exposed to different solutions, and the results showed that displacements occur in contact with higher affinity ligands, proving that two-stage competition processes can occur in collectin carbohydrate recognition mechanisms. Moreover, the fluorescence loss depends on the discrepancy between the respective avidities of the recognized ligand and the fluorescent mannan. Chemically modulated fluorescent ligands associated with a diversity of collectins may lead to the creation of diagnostic tools suitable for multiplex array assays and the identification of high-avidity ligands.


Asunto(s)
Colectinas , Sepsis , Humanos , Animales , Porcinos , Proteína D Asociada a Surfactante Pulmonar/química , Mananos/metabolismo , Ligandos , Lectinas/metabolismo
5.
PLoS Pathog ; 18(8): e1010771, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35960766

RESUMEN

ESX type VII secretion systems are complex secretion machineries spanning across the mycobacterial membrane and play an important role in pathogenicity, nutrient uptake and conjugation. We previously reported the role of ESX-4 in modulating Mycobacterium abscessus intracellular survival. The loss of EccB4 was associated with limited secretion of two effector proteins belonging to the WXG-100 family, EsxU and EsxT, and encoded by the esx-4 locus. This prompted us to investigate the function of M. abscessus EsxU and EsxT in vitro and in vivo. Herein, we show that EsxU and EsxT are substrates of ESX-4 and form a stable 1:1 heterodimer that permeabilizes artificial membranes. While expression of esxU and esxT was up-regulated in M. abscessus-infected macrophages, their absence in an esxUT deletion mutant prevented phagosomal membrane disruption while maintaining M. abscessus in an unacidified phagosome. Unexpectedly, the esxUT deletion was associated with a hyper-virulent phenotype, characterised by increased bacterial loads and mortality in mouse and zebrafish infection models. Collectively, these results demonstrate that the presence of EsxU and EsxT dampens survival and persistence of M. abscessus during infection.


Asunto(s)
Mycobacterium abscessus , Mycobacterium marinum , Mycobacterium tuberculosis , Mycobacterium , Sistemas de Secreción Tipo VII , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ratones , Mycobacterium/genética , Mycobacterium abscessus/genética , Mycobacterium marinum/metabolismo , Mycobacterium tuberculosis/genética , Sistemas de Secreción Tipo VII/genética , Sistemas de Secreción Tipo VII/metabolismo , Pez Cebra/metabolismo
6.
Microbiology (Reading) ; 167(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34224347

RESUMEN

Non-tuberculous mycobacteria (NTM) are a large group of micro-organisms comprising more than 200 individual species. Most NTM are saprophytic organisms and are found mainly in terrestrial and aquatic environments. In recent years, NTM have been increasingly associated with infections in both immunocompetent and immunocompromised individuals, prompting significant efforts to understand the diverse pathogenic and signalling traits of these emerging pathogens. Since the discovery of Type VII secretion systems (T7SS), there have been significant developments regarding the role of these complex systems in mycobacteria. These specialised systems, also known as Early Antigenic Secretion (ESX) systems, are employed to secrete proteins across the inner membrane. They also play an essential role in virulence, nutrient uptake and conjugation. Our understanding of T7SS in mycobacteria has significantly benefited over the last few years, from the resolution of ESX-3 structure in Mycobacterium smegmatis, to ESX-5 structures in Mycobacterium xenopi and Mycobacterium tuberculosis. In addition, ESX-4, considered until recently as a non-functional system in both pathogenic and non-pathogenic mycobacteria, has been proposed to play an important role in the virulence of Mycobacterium abscessus; an increasingly recognized opportunistic NTM causing severe lung diseases. These major findings have led to important new insights into the functional mechanisms of these biological systems, their implication in virulence, nutrient acquisitions and cell wall shaping, and will be discussed in this review.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas/metabolismo , Sistemas de Secreción Tipo VII/metabolismo , Proteínas Bacterianas/genética , Pared Celular/genética , Pared Celular/metabolismo , Humanos , Micobacterias no Tuberculosas/genética , Micobacterias no Tuberculosas/patogenicidad , Sistemas de Secreción Tipo VII/genética , Virulencia
7.
Science ; 372(6541): 516-520, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33926955

RESUMEN

Cells have two purine pathways that synthesize adenine and guanine ribonucleotides from phosphoribose via inosylate. A chemical hybrid between adenine and guanine, 2-aminoadenine (Z), replaces adenine in the DNA of the cyanobacterial virus S-2L. We show that S-2L and Vibrio phage PhiVC8 encode a third purine pathway catalyzed by PurZ, a distant paralog of succinoadenylate synthase (PurA), the enzyme condensing aspartate and inosylate in the adenine pathway. PurZ condenses aspartate with deoxyguanylate into dSMP (N6-succino-2-amino-2'-deoxyadenylate), which undergoes defumarylation and phosphorylation to give dZTP (2-amino-2'-deoxyadenosine-5'-triphosphate), a substrate for the phage DNA polymerase. Crystallography and phylogenetics analyses indicate a close relationship between phage PurZ and archaeal PurA enzymes. Our work elucidates the biocatalytic innovation that remodeled a DNA building block beyond canonical molecular biology.


Asunto(s)
2-Aminopurina/análogos & derivados , Adenilosuccinato Sintasa/química , Bacteriófagos/química , Bacteriófagos/enzimología , Vías Biosintéticas , ADN Viral/química , Proteínas no Estructurales Virales/química , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenilosuccinato Sintasa/clasificación , Adenilosuccinato Sintasa/genética , Bacteriófagos/genética , Cristalografía por Rayos X , ADN Viral/genética , Genoma Viral , Filogenia , Proteínas no Estructurales Virales/clasificación , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA