Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Clin Invest ; 134(10)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573766

RESUMEN

BACKGROUNDThe molecular signature of pediatric acute respiratory distress syndrome (ARDS) is poorly described, and the degree to which hyperinflammation or specific tissue injury contributes to outcomes is unknown. Therefore, we profiled inflammation and tissue injury dynamics over the first 7 days of ARDS, and associated specific biomarkers with mortality, persistent ARDS, and persistent multiple organ dysfunction syndrome (MODS).METHODSIn a single-center prospective cohort of intubated pediatric patients with ARDS, we collected plasma on days 0, 3, and 7. Nineteen biomarkers reflecting inflammation, tissue injury, and damage-associated molecular patterns (DAMPs) were measured. We assessed the relationship between biomarkers and trajectories with mortality, persistent ARDS, or persistent MODS using multivariable mixed effect models.RESULTSIn 279 patients (64 [23%] nonsurvivors), hyperinflammatory cytokines, tissue injury markers, and DAMPs were higher in nonsurvivors. Survivors and nonsurvivors showed different biomarker trajectories. IL-1α, soluble tumor necrosis factor receptor 1, angiopoietin 2 (ANG2), and surfactant protein D increased in nonsurvivors, while DAMPs remained persistently elevated. ANG2 and procollagen type III N-terminal peptide were associated with persistent ARDS, whereas multiple cytokines, tissue injury markers, and DAMPs were associated with persistent MODS. Corticosteroid use did not impact the association of biomarker levels or trajectory with mortality.CONCLUSIONSPediatric ARDS survivors and nonsurvivors had distinct biomarker trajectories, with cytokines, endothelial and alveolar epithelial injury, and DAMPs elevated in nonsurvivors. Mortality markers overlapped with markers associated with persistent MODS, rather than persistent ARDS.FUNDINGNIH (K23HL-136688, R01-HL148054).


Asunto(s)
Biomarcadores , Inflamación , Síndrome de Dificultad Respiratoria , Humanos , Biomarcadores/sangre , Biomarcadores/metabolismo , Masculino , Femenino , Niño , Preescolar , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/mortalidad , Lactante , Inflamación/sangre , Estudios Prospectivos , Adolescente , Insuficiencia Multiorgánica/sangre , Insuficiencia Multiorgánica/mortalidad , Citocinas/sangre
2.
Pediatr Crit Care Med ; 25(1): e31-e40, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37382480

RESUMEN

OBJECTIVES: Pediatric acute respiratory distress syndrome (PARDS) is a source of substantial morbidity and mortality in the PICU, and different plasma biomarkers have identified different PARDS and ARDS subgroups. We have a poor understanding of how these biomarkers change over time and with changing lung injuries. We sought to determine how biomarker levels change over PARDS course, whether they are correlated, and whether they are different in critically ill non-PARDS patients. DESIGN: Two-center prospective observational study. SETTING: Two quaternary care academic children's hospitals. PATIENTS: Subjects under 18 years of age admitted to the PICU who were intubated and met the Second Pediatric Acute Lung Injury Consensus Conference-2 PARDS diagnostic criteria and nonintubated critically ill subjects without apparent lung disease. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Plasma samples were obtained on study days 1, 3, 7, and 14. The levels of 16 biomarkers were measured using a fluorometric bead-based assay. Compared with non-PARDS subjects, on day 1 PARDS subjects had increased concentrations of tumor necrosis factor-alpha, interleukin (IL)-8, interferon-γ, IL17, granzyme B, soluble intercellular adhesion molecule-1 (sICAM1), surfactant protein D, and IL18 but reduced matrix metalloproteinase 9 (MMP-9) concentrations (all p < 0.05). Day 1 biomarker concentrations and PARDS severity were not correlated. Over PARDS course, changes in 11 of the 16 biomarkers positively correlated with changing lung injury with sICAM1 ( R = 0.69, p = 2.2 × 10 -16 ) having the strongest correlation. By Spearman rank correlation of biomarker concentrations in PARDS subjects, we identified two patterns. One had elevations of plasminogen activator inhibitor-1, MMP-9, and myeloperoxidase, and the other had higher inflammatory cytokines. CONCLUSIONS: sICAM1 had the strongest positive correlation with worsening lung injury across all study time points suggesting that it is perhaps the most biologically relevant of the 16 analytes. There was no correlation between biomarker concentration on day 1 and day 1 PARDS severity; however, changes in most biomarkers over time positively correlated with changing lung injury. Finally, in day 1 samples, 7 of the 16 biomarkers were not significantly different between PARDS and critically ill non-PARDS subjects. These data highlight the difficulty of using plasma biomarkers to identify organ-specific pathology in critically ill patients.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Niño , Humanos , Adolescente , Metaloproteinasa 9 de la Matriz , Enfermedad Crítica , Biomarcadores
3.
Innate Immun ; 29(8): 161-170, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37802127

RESUMEN

Sepsis is a leading cause of mortality. Plasma cytokine levels may identify those at increased risk of mortality from sepsis. Our aim was to understand how obesity alters cytokine levels during early sepsis and its correlation with survival. Six-week-old C57BL/6 male mice were randomized to control (non-obese) or high fat diet (obese) for 5-7 weeks. Sepsis was induced by cecal ligation and perforation (CLP). Cytokine levels were measured from cheek bleeds 8 h after CLP, and mice were monitored for survival. Other cohorts were sacrificed 1 h after CLP for plasma and tissue. Septic obese mice had higher survival. At 8 h after sepsis, obese mice had higher adiponectin, leptin, and resistin but lower TNFα and IL-6 compared to non-obese mice. When stratified by 24-h survival, adipokines were not significantly different in obese and non-obese mice. TNFα and IL-6 were higher in non-obese, compared to obese, mice that died within 24 h of sepsis. Diet and to sepsis significantly impacted the cecal microbiome. IL-6 is a prognostic biomarker during early sepsis in non-obese and obese mice. A plausible mechanism for the survival difference in non-obese and obese mice may be the difference in gut microbiome and its evolution during sepsis.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Animales , Masculino , Ratones , Citocinas , Interleucina-6 , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Factor de Necrosis Tumoral alfa
4.
Crit Care ; 27(1): 250, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365661

RESUMEN

BACKGROUND: Sepsis is associated with significant mortality. Yet, there are no efficacious therapies beyond antibiotics. PCSK9 loss-of-function (LOF) and inhibition, through enhanced low-density lipoprotein receptor (LDLR) mediated endotoxin clearance, holds promise as a potential therapeutic approach among adults. In contrast, we have previously demonstrated higher mortality in the juvenile host. Given the potential pleiotropic effects of PCSK9 on the endothelium, beyond canonical effects on serum lipoproteins, both of which may influence sepsis outcomes, we sought to test the influence of PCSK9 LOF genotype on endothelial dysfunction. METHODS: Secondary analyses of a prospective observational cohort of pediatric septic shock. Genetic variants of PCSK9 and LDLR genes, serum PCSK9, and lipoprotein concentrations were determined previously. Endothelial dysfunction markers were measured in day 1 serum. We conducted multivariable linear regression to test the influence of PCSK9 LOF genotype on endothelial markers, adjusted for age, complicated course, and low- and high-density lipoproteins (LDL and HDL). Causal mediation analyses to test impact of select endothelial markers on the association between PCSK9 LOF genotype and mortality. Juvenile Pcsk9 null and wildtype mice were subject to cecal slurry sepsis and endothelial markers were quantified. RESULTS: A total of 474 patients were included. PCSK9 LOF was associated with several markers of endothelial dysfunction, with strengthening of associations after exclusion of those homozygous for the rs688 LDLR variant that renders it insensitive to PCSK9. Serum PCSK9 was not correlated with endothelial dysfunction. PCSK9 LOF influenced concentrations of Angiopoietin-1 (Angpt-1) upon adjusting for potential confounders including lipoprotein concentrations, with false discovery adjusted p value of 0.042 and 0.013 for models that included LDL and HDL, respectively. Causal mediation analysis demonstrated that the effect of PCSK9 LOF on mortality was mediated by Angpt-1 (p = 0.0008). Murine data corroborated these results with lower Angpt-1 and higher soluble thrombomodulin among knockout mice with sepsis relative to the wildtype. CONCLUSIONS: We present genetic and biomarker association data that suggest a potential direct role of the PCSK9-LDLR pathway on Angpt-1 in the developing host with septic shock and warrant external validation. Further, mechanistic studies on the role of PCSK9-LDLR pathway on vascular homeostasis may lead to the development of pediatric-specific sepsis therapies.


Asunto(s)
Proproteína Convertasa 9 , Sepsis , Choque Séptico , Animales , Ratones , Angiopoyetina 1/genética , Biomarcadores , Genotipo , Lipoproteínas , Sepsis/genética , Choque Séptico/genética , Humanos , Niño , Proproteína Convertasa 9/genética , Mutación con Pérdida de Función
5.
Pediatr Crit Care Med ; 24(7): 563-573, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37092821

RESUMEN

OBJECTIVES: Most biomarker studies of sepsis originate from high-income countries, whereas mortality risk is higher in low- and middle-income countries. The second version of the Pediatric Sepsis Biomarker Risk Model (PERSEVERE-II) has been validated in multiple North American PICUs for prognosis. Given differences in epidemiology, we assessed the performance of PERSEVERE-II in septic children from Pakistan, a low-middle income country. Due to uncertainty regarding how well PERSEVERE-II would perform, we also assessed the utility of other select biomarkers reflecting endotheliopathy, coagulopathy, and lung injury. DESIGN: Prospective cohort study. SETTING: PICU in Aga Khan University Hospital in Karachi, Pakistan. PATIENTS: Children (< 18 yr old) meeting pediatric modifications of adult Sepsis-3 criteria between November 2020 and February 2022 were eligible. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Plasma was collected within 24 hours of admission and biomarkers quantified. The area under the receiver operating characteristic curve for PERSEVERE-II to discriminate 28-day mortality was determined. Additional biomarkers were compared between survivors and nonsurvivors and between subjects with and without acute respiratory distress syndrome. In 86 subjects (20 nonsurvivors, 23%), PERSEVERE-II discriminated mortality (area under the receiver operating characteristic curve, 0.83; 95% CI, 0.72-0.94) and stratified the cohort into low-, medium-, and high-risk of mortality. Biomarkers reflecting endotheliopathy (angiopoietin 2, intracellular adhesion molecule 1) increased across worsening risk strata. Angiopoietin 2, soluble thrombomodulin, and plasminogen activator inhibitor 1 were higher in nonsurvivors, and soluble receptor for advanced glycation end-products and surfactant protein D were higher in children meeting acute respiratory distress syndrome criteria. CONCLUSIONS: PERSEVERE-II performs well in septic children from Aga Khan University Hospital, representing the first validation of PERSEVERE-II in a low-middle income country. Patients possessed a biomarker profile comparable to that of sepsis from high-income countries, suggesting that biomarker-based enrichment strategies may be effective in this setting.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Niño , Humanos , Angiopoyetina 2 , Estudios Prospectivos , Países en Desarrollo , Receptor para Productos Finales de Glicación Avanzada , Medición de Riesgo , Biomarcadores , Pronóstico
6.
Shock ; 60(1): 64-74, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37079467

RESUMEN

ABSTRACT: Introduction: Despite therapeutic advances in hemorrhagic shock, mortality from multiple organ failure remains high. We previously showed that the α1 subunit of AMP-activated protein kinase (AMPK), a crucial regulator of mitochondrial function, exerts a protective role in hemorrhagic shock. Humanin is a mitochondrial peptide with cytoprotective properties against cellular stress. Here, we investigated whether AMPKα1 influences systemic levels of endogenous humanin in hemorrhagic shock and whether treatment with the synthetic analog humanin-G affords beneficial effects. Methods: AMPKα1 wild-type (WT) and knockout (KO) female mice were subjected to hemorrhagic shock followed by resuscitation with blood and lactated Ringer's solution. In short-term studies, mice were treated with humanin-G or vehicle and sacrificed at 3 h after resuscitation; in survival studies, mice were treated with PEGylated humanin-G and monitored for 7 days. Results: Compared with the vehicle WT group, KO mice exhibited severe hypotension, cardiac mitochondrial damage, and higher plasma levels of Th17 cytokines but had similar lung injury and similar plasma elevation of endogenous humanin. Treatment with humanin-G improved lung injury, mean arterial blood pressure, and survival in both WT and KO mice, without affecting systemic cytokine or humanin levels. Humanin-G also ameliorated cardiac mitochondrial damage and increased adenosine triphosphate levels in KO mice. Beneficial effects of humanin-G were associated with lung cytoplasmic and nuclear activation of the signal transducer and activator of transcription-3 (STAT3) in AMPKα1-independent manner with marginal or no effects on mitochondrial STAT3 and complex I subunit GRIM-19. Conclusions: Our data indicate that circulating levels of humanin increase during hemorrhagic shock in AMPKα1-independent fashion as a defense mechanism to counteract metabolic derangement and that administration of humanin-G affords beneficial effects through STAT3 activation even in the absence of a functional AMPKα1.


Asunto(s)
Lesión Pulmonar , Choque Hemorrágico , Femenino , Humanos , Choque Hemorrágico/metabolismo , Lesión Pulmonar/complicaciones , Proteínas Quinasas Activadas por AMP/metabolismo , Pulmón/metabolismo , Citocinas , Resucitación
7.
Shock ; 59(5): 779-790, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36840516

RESUMEN

ABSTRACT: Introduction: Sepsis is a dysregulated host response to infection that can lead to life-threatening organ dysfunction. Clinical and animal studies consistently demonstrate that female subjects are less susceptible to the adverse effects of sepsis, demonstrating the importance of understanding how sex influences sepsis outcomes. The signal transducer and activator of transcription 3 (STAT3) pathway are a major signaling pathway that facilitates inflammation during sepsis. STAT3 is abundantly expressed in white adipose tissue; however, little is known about the contribution of white adipose tissue STAT3 activation during sepsis. We hypothesize that adipocyte STAT3 inhibition during severe sepsis will exaggerate the inflammatory response and impact organ injury, in a sex-dependent manner. Methods: We generated STAT3 flox/flox (wild-type [WT]) and adipocyte STAT3 knock out (A-STAT3 KO) mice using Cre-lox technology. Studies were done in 12- to 16-week-old male and female mice. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Control nonseptic mice did not undergo CLP (0 h CLP). Tissues were harvested 18 h after CLP. Body composition was determined by echo magnetic resonance imaging. Energy metabolism was determined by indirect calorimetry. White adipose tissue morphology was determined by hematoxylin and eosin staining, while STAT3 activation in the white adipose tissue was determined by western blot analysis and immunohistochemistry staining of STAT3 activation/phosphorylation at tyrosine 705. Plasma cytokines (TNF-α, IL-6, and leptin) were determined by luminex assay. Neutrophil infiltration of the lung and liver was assessed by myeloperoxidase activity assay. Histological signs of organ injury on lung and liver tissue were assessed by hematoxylin and eosin staining. Liver injury was further assessed by measuring plasma alanine and aspartate aminotransferase. In a separate cohort of mice, sepsis was induced by CLP and mice were monitored every 6-12 h over a 7-day period to assess survival rate. Results: We demonstrate that neither body composition nor energy metabolism is altered with adipocyte STAT3 inhibition in male or female mice, under nonseptic conditions. Sepsis was associated with reduced adipocyte size in female WT and A-STAT3 KO mice, suggesting that this event is STAT3 independent. Sepsis did not alter adipocyte size in male WT and A-STAT3 KO mice, suggesting that this event is also sex dependent. Although STAT3 phosphorylation at tyrosine 705 expression is negligible in male and female A-STAT3 KO mice, septic female WT and A-STAT3 KO mice have higher white adipose tissue STAT3 activation than male WT and A-STAT3 KO mice. Adipocyte STAT3 inhibition did not alter the proinflammatory cytokine response during sepsis in male or female mice, as measured by plasma TNF-α, IL-6, and leptin levels. Adipocyte STAT3 inhibition reduced lung neutrophil infiltration and histological signs of lung injury during sepsis in male mice. On the contrary, adipocyte STAT3 inhibition had no effect on lung neutrophil infiltration or lung injury in female mice. We further demonstrate that neither liver neutrophil infiltration nor histological signs of liver injury are altered by adipocyte STAT3 inhibition during sepsis, in male or female mice. Lastly, adipocyte STAT3 inhibition did not affect survival rate of male or female mice during sepsis. Conclusions: Our study demonstrates that sex influences white adipose tissue STAT3 activation and morphology during sepsis, which is not dependent on the presence of functional STAT3 in mature adipocytes. Furthermore, genetic inhibition of adipocyte STAT3 activation in male, but not female mice, results in reduced lung neutrophil infiltration and lung injury during sepsis. The results from our study demonstrate the importance of considering biological sex and the white adipose tissue as potential sources and targets of inflammation during sepsis.


Asunto(s)
Lesión Pulmonar , Sepsis , Masculino , Ratones , Animales , Leptina , Lesión Pulmonar/complicaciones , Factor de Necrosis Tumoral alfa , Interleucina-6 , Factor de Transcripción STAT3/genética , Eosina Amarillenta-(YS) , Hematoxilina , Sepsis/patología , Citocinas , Inflamación , Adipocitos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
8.
Res Sq ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778250

RESUMEN

Background: Sepsis is associated with significant mortality, yet there are no efficacious therapies beyond antibiotics and supportive care. In adult sepsis studies, PCSK9 loss-of-function (LOF) and inhibition has shown therapeutic promise, likely through enhanced low-density lipoprotein receptor (LDLR) mediated endotoxin clearance. In contrast, we previously demonstrated higher mortality in septic juvenile hosts with PCSK9 LOF. In addition to direct influence on serum lipoprotein levels, PCSK9 likely exerts pleiotropic effects on vascular endothelium. Both mechanisms may influence sepsis outcomes. We sought to test the influence of PCSK9 LOF genotype on endothelial dysfunction in pediatric sepsis. Methods: Secondary analyses of a prospective observational cohort of pediatric septic shock. Single nucleotide polymorphisms of PCSK9 and LDLR genes were assessed. Serum PCSK9, lipoprotein, and endothelial marker concentrations were measured. Multivariable linear regression tested the influence of PCSK9 LOF genotype on endothelial markers, adjusted for age, complicated course, and low- and high-density lipoproteins (LDL and HDL). Causal mediation analyses assessed impact of select endothelial markers on the association between PCSK9 LOF genotype and mortality. Juvenile Pcsk9 null and wildtype mice were subject to cecal slurry sepsis and endothelial markers were quantified. Results: 474 patients were included. PCSK9 LOF was associated with several markers of endothelial dysfunction, with strengthening of associations after exclusion of patients homozygous for the rs688 LDLR variant that renders it insensitive to PCSK9. Serum PCSK9 levels did not correlate with endothelial dysfunction. PCSK9 LOF significantly influenced concentrations of Angiopoietin-1 (Angpt-1) and Vascular Cell Adhesion Molecule-1 (VCAM-1). However, upon adjusting for LDL and HDL, PCSK9 LOF remained significantly associated with low Angpt-1 alone. Causal Mediation Analysis demonstrated that the effect of PCSK9 LOF on mortality was partially mediated by Angpt-1 (p=0.0008). Murine data corroborated these results with lower Angpt-1 and higher soluble thrombomodulin among knockout mice with sepsis relative to the wildtype. Conclusions: PCSK9 LOF independently influences serum Angpt-1 levels in pediatric septic shock. Angpt-1 likely contributes mechanistically to the effect of PCSK9 LOF on mortality in juvenile hosts. Mechanistic studies on the role of PCSK9-LDLR pathway on vascular homeostasis may lead to the development of novel pediatric-specific sepsis therapies.

9.
Pediatr Res ; 94(4): 1451-1456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36513805

RESUMEN

BACKGROUND: Prognostic biomarker research neonatal sepsis is lacking. We assessed the utility of a validated pediatric prognostic tool called PERSEVERE II that uses decision tree methodology to predict mortality at discharge in neonates who experienced sepsis. METHODS: Prospective study in a dual-center cohort of neonates with sepsis admitted between June 2020 and December 2021. Biomarker analysis was done on serum samples obtained at the time of evaluation for the event. RESULTS: In a cohort of 59 neonates with a mortality rate of 15.3%, PERSEVERE II was 67% sensitive and 59% specific for mortality, p 0.27. Amongst PERSEVERE II biomarkers, IL-8 showed good prognostic performance for mortality prediction with a cutoff of 300 pg/mL (sensitivity 100%, specificity 65%, negative predictive value 100%, AUC 0.87, p 0.0003). We derived a new decision tree that is neonate specific (nPERSEVERE) with improved performance compared to IL-8 (sensitivity 100%, specificity 86%, negative predictive value 100%, AUC 0.95, p < 0.0001). CONCLUSIONS: IL-8 and nPERSEVERE demonstrated good prognostic performance in a small cohort of neonates with sepsis. Moving toward precision medicine in sepsis, our study proposes an important tool for clinical trial prognostic enrichment that needs to be validated in larger studies. IMPACT: Prognostic and predictive biomarker research is lacking in the newborn intensive care unit. Biomarkers can be used at the time of evaluation for neonatal sepsis (blood culture acquisition) to identify neonates with high baseline mortality risk. Stratification is an important step toward precision medicine in neonatal sepsis.


Asunto(s)
Sepsis Neonatal , Sepsis , Recién Nacido , Niño , Humanos , Sepsis Neonatal/diagnóstico , Estudios Prospectivos , Interleucina-8 , Medición de Riesgo , Sepsis/diagnóstico , Biomarcadores
10.
Front Immunol ; 13: 984298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119052

RESUMEN

Endothelial dysfunction plays a central role in the pathogenesis of sepsis-mediated multiple organ failure. Several clinical and experimental studies have suggested that the glycocalyx is an early target of endothelial injury during an infection. Colivelin, a synthetic derivative of the mitochondrial peptide humanin, has displayed cytoprotective effects in oxidative conditions. In the current study, we aimed to determine the potential therapeutic effects of colivelin in endothelial dysfunction and outcomes of sepsis in vivo. Male C57BL/6 mice were subjected to a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP) and were treated with vehicle or colivelin (100-200 µg/kg) intraperitoneally at 1 h after CLP. We observed that vehicle-treated mice had early elevation of plasma levels of the adhesion molecules ICAM-1 and P-selectin, the angiogenetic factor endoglin and the glycocalyx syndecan-1 at 6 h after CLP when compared to control mice, while levels of angiopoietin-2, a mediator of microvascular disintegration, and the proprotein convertase subtilisin/kexin type 9, an enzyme implicated in clearance of endotoxins, raised at 18 h after CLP. The early elevation of these endothelial and glycocalyx damage biomarkers coincided with lung histological injury and neutrophil inflammation in lung, liver, and kidneys. At transmission electron microscopy analysis, thoracic aortas of septic mice showed increased glycocalyx breakdown and shedding, and damaged mitochondria in endothelial and smooth muscle cells. Treatment with colivelin ameliorated lung architecture, reduced organ neutrophil infiltration, and attenuated plasma levels of syndecan-1, tumor necrosis factor-α, macrophage inflammatory protein-1α and interleukin-10. These therapeutic effects of colivelin were associated with amelioration of glycocalyx density and mitochondrial structure in the aorta. At molecular analysis, colivelin treatment was associated with inhibition of the signal transducer and activator of transcription 3 and activation of the AMP-activated protein kinase in the aorta and lung. In long-term outcomes studies up to 7 days, co-treatment of colivelin with antimicrobial agents significantly reduced the disease severity score when compared to treatment with antibiotics alone. In conclusion, our data support that damage of the glycocalyx is an early pathogenetic event during sepsis and that colivelin may have therapeutic potential for the treatment of sepsis-associated endothelial dysfunction.


Asunto(s)
Glicocálix , Sepsis , Proteínas Quinasas Activadas por AMP/metabolismo , Angiopoyetina 2/metabolismo , Angiopoyetina 2/uso terapéutico , Animales , Antibacterianos/uso terapéutico , Endoglina/metabolismo , Endotelio Vascular/metabolismo , Endotoxinas/metabolismo , Glicocálix/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-10/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas Inflamatorias de Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Selectina-P/metabolismo , Proproteína Convertasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Sepsis/metabolismo , Subtilisinas/metabolismo , Subtilisinas/uso terapéutico , Sindecano-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Respir Res ; 23(1): 181, 2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35804409

RESUMEN

RATIONALE: While nasal brushing transcriptomics can identify disease subtypes in chronic pulmonary diseases, it is unknown whether this is true in pediatric acute respiratory distress syndrome (PARDS). OBJECTIVES: Determine whether nasal transcriptomics and methylomics can identify clinically meaningful PARDS subgroups that reflect important pathobiological processes. METHODS: Nasal brushings and serum were collected on days 1, 3, 7, and 14 from control and PARDS subjects from two centers. PARDS duration was the primary endpoint. MEASUREMENTS AND MAIN RESULTS: Twenty-four control and 39 PARDS subjects were enrolled. Two nasal methylation patterns were identified. Compared to Methyl Subgroup 1, Subgroup 2 had hypomethylation of inflammatory genes and was enriched for immunocompromised subjects. Four transcriptomic patterns were identified with temporal patterns indicating injury, repair, and regeneration. Over time, both inflammatory (Subgroup B) and cell injury (Subgroup D) patterns transitioned to repair (Subgroup A) and eventually homeostasis (Subgroup C). When control specimens were included, they were largely Subgroup C. In comparison with 17 serum biomarkers, the nasal transcriptome was more predictive of prolonged PARDS. Subjects with initial Transcriptomic Subgroup B or D assignment had median PARDS duration of 8 days compared to 2 in A or C (p = 0.02). For predicting PARDS duration ≥ 3 days, nasal transcriptomics was more sensitive and serum biomarkers more specific. CONCLUSIONS: PARDS nasal transcriptome may reflect distal lung injury, repair, and regeneration. A combined nasal PCR and serum biomarker assay could be useful for predictive and diagnostic enrichment. Trial registration Clinicaltrials.gov NCT03539783 May 29, 2018.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Biomarcadores , Niño , Humanos , Nariz , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/genética
12.
Am J Physiol Renal Physiol ; 323(3): F255-F271, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35834274

RESUMEN

Acute kidney injury (AKI) is common in critically ill patients, and sepsis is its leading cause. Sepsis-associated AKI (SA-AKI) causes greater morbidity and mortality than other AKI etiologies, yet the underlying mechanisms are incompletely understood. Metabolomic technologies can characterize cellular energy derangements, but few discovery analyses have evaluated the metabolomic profile of SA-AKI. To identify metabolic derangements amenable to therapeutic intervention, we assessed plasma and urine metabolites in septic mice and critically ill children and compared them by AKI status. Metabolites related to choline and central carbon metabolism were differentially abundant in SA-AKI in both mice and humans. Gene expression of enzymes related to choline metabolism was altered in the kidneys and liver of mice with SA-AKI. Treatment with intraperitoneal choline improved renal function in septic mice. Because pediatric patients with sepsis displayed similar metabolomic profiles to septic mice, choline supplementation may attenuate pediatric septic AKI.NEW & NOTEWORTHY Altered choline metabolism plays a role in both human and murine sepsis-associated acute kidney injury (SA-AKI), and choline administration in experimental SA-AKI improved renal function. These findings indicate that 1) mouse models can help interrogate clinically relevant mechanisms and 2) choline supplementation may ameliorate human SA-AKI. Future research will investigate clinically the impact of choline supplementation on human renal function in sepsis and, using model systems, how choline mediates its effects.


Asunto(s)
Lesión Renal Aguda , Sepsis , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Animales , Niño , Colina/metabolismo , Enfermedad Crítica , Suplementos Dietéticos , Humanos , Riñón/metabolismo , Ratones , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
13.
PLoS One ; 17(2): e0261708, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35157709

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is increasing in incidence in adult and pediatric patients. Identification of patients at high risk for progression to severe acute pancreatitis (SAP) is crucial, as it can lead to increased mortality and health system cost. Matrix metalloproteinases (MMPs) are endopeptidases which degrade extracellular matrix proteins and increase activity of pro-inflammatory cytokines. Tissue inhibitors of metalloproteinases (TIMPs) regulate MMP activity. Prior limited studies of MMPs and TIMPs have found some to be associated with development of SAP. The aim of this study was to further investigate the role of MMPs and TIMPs in detecting pediatric patients at risk for developing moderately severe AP or SAP. METHODS: Plasma samples were prospectively collected for patients <21 years of age presenting with AP between November 2015 and October 2019, along with healthy controls. Bead-based multiplex assays were utilized to test levels of 12 MMPs and TIMPs. RESULTS: Samples were collected from 7 subjects who developed SAP, 7 with moderately severe AP, 45 with mild AP and 44 healthy controls. MMP-9 (p = 0.04) and TIMP-1 (p = 0.01) levels were significantly higher in SAP patients. A multivariable logistic regression model using MMP-9 and TIMP-1 predicted SAP (AUROC 0.87, 95% CI 0.76-0.98). CONCLUSION: We have demonstrated that MMP9 and TIMP1 levels are increased at AP presentation in pediatric patients who developed SAP during the course of illness. Further studies are needed to validate the use of MMPs and TIMPs as predictive tools for development of SAP in pediatric pancreatitis.


Asunto(s)
Metaloproteinasas de la Matriz/metabolismo , Pancreatitis/patología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Adolescente , Área Bajo la Curva , Estudios de Casos y Controles , Niño , Femenino , Humanos , Modelos Logísticos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Pancreatitis/metabolismo , Estudios Prospectivos , Curva ROC , Índice de Severidad de la Enfermedad
14.
Antimicrob Agents Chemother ; 66(1): e0142721, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633847

RESUMEN

Critical illness, including sepsis, causes significant pathophysiologic changes that alter the pharmacokinetics (PK) of antibiotics. Ceftriaxone is one of the most prescribed antibiotics in patients admitted to the pediatric intensive care unit (PICU). We sought to develop population PK models of both total ceftriaxone and free ceftriaxone in children admitted to a single-center PICU using a scavenged opportunistic sampling approach. We tested if the presence of sepsis and phase of illness (before or after 48 h of antibiotic treatment) altered ceftriaxone PK parameters. We performed Monte Carlo simulations to evaluate whether dosing regimens commonly used in PICUs in the United States (50 mg/kg of body weight every 12 h versus 24 h) resulted in adequate antimicrobial coverage. We found that a two-compartment model best described both total and free ceftriaxone concentrations. For free concentrations, the population clearance value is 6.54 L/h/70 kg, central volume is 25.4 L/70 kg, and peripheral volume is 19.6 L/70 kg. For both models, we found that allometric weight scaling, postmenstrual age, creatinine clearance, and daily highest temperature had significant effects on clearance. The presence of sepsis or phase of illness did not have a significant effect on clearance or volume of distribution. Monte Carlo simulations demonstrated that to achieve free concentrations above 1 µg/ml for 100% of the dosing intervals, a dosing regimen of 50 mg/kg every 12 h is recommended for most patients. A continuous infusion could be considered if the target is to maintain free concentrations four times above the MICs (4 µg/ml).


Asunto(s)
Ceftriaxona , Enfermedad Crítica , Antibacterianos/uso terapéutico , Ceftriaxona/farmacocinética , Ceftriaxona/uso terapéutico , Niño , Enfermedad Crítica/terapia , Humanos , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Adulto Joven
15.
Am J Physiol Endocrinol Metab ; 321(3): E433-E442, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34370596

RESUMEN

Sepsis is a dysregulated systemic response to infection and can lead to organ damage and death. Obesity is a significant problem worldwide and affects outcomes from sepsis. Our laboratory demonstrated that white adipose tissue (WAT) undergoes browning during sepsis, a process whereby WAT adopts a brown adipose tissue phenotype. However, this browning process was not observed in obese mice during sepsis. White adipose tissue browning is detrimental in patients with burn injury and cancer. We hypothesize that norepinephrine (NE) induces WAT browning in nonobese mice but not in obese mice similarly to sepsis-induced WAT browning. Six-week-old C57BL/6 male mice were randomized to a high-fat diet or normal diet. After 6-7 wk of feeding, polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Norepinephrine was administered intraperitoneally via osmotic minipumps for 18 h or 72 h (no CLP) at which time tissue and plasma were harvested. Controls were mice that underwent CLP (no NE) with 18-h harvest. A separate group of mice underwent pretreatment with NE or vehicle infusion for 72 h, CLP was performed, and at 18 h had tissue and plasma harvested. Sepsis resulted in significant weight loss in both nonobese and obese mice. NE treatment alone caused weight loss in obese mice. Septic nonobese mice had higher uncoupling protein-1 (UCP1) expression compared with control and obese septic mice. NE treatment increased UCP1 expression in nonobese, but not obese mice. NE-treated obese septic mice had lower lung myeloperoxidase (MPO) activity, alanine aminotransferase (ALT), aspartate aminotransferase (AST), TNFα, and IL-6 levels compared with NE-treated nonobese septic mice. Obesity protects mice from septic-induced and NE-induced WAT browning.NEW & NOTEWORTHY White adipose tissue browning is detrimental in patients with burn injury and cancer. WAT browning occurs in nonobese mice and can be induced by ß receptor norepinephrine infusion, but obese mice are resistant to sepsis-induced and norepinephrine-induced WAT browning. We propose that the lack of WAT browning and unchanged inflammatory cytokine response may contribute to the protection of obese mice from sepsis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Norepinefrina/administración & dosificación , Obesidad/metabolismo , Sepsis/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/diagnóstico por imagen , Animales , Dieta Alta en Grasa , Masculino , Ratones Endogámicos C57BL , Obesidad/complicaciones , Sepsis/complicaciones
16.
Am J Physiol Renal Physiol ; 320(5): F984-F1000, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33843271

RESUMEN

Sepsis-associated acute kidney injury (SA-AKI) is a significant problem in the critically ill that causes increased death. Emerging understanding of this disease implicates metabolic dysfunction in its pathophysiology. This study sought to identify specific metabolic pathways amenable to potential therapeutic intervention. Using a murine model of sepsis, blood and tissue samples were collected for assessment of systemic inflammation, kidney function, and renal injury. Nuclear magnetic resonance (NMR)-based metabolomics quantified dozens of metabolites in serum and urine that were subsequently submitted to pathway analysis. Kidney tissue gene expression analysis confirmed the implicated pathways. Septic mice had elevated circulating levels of inflammatory cytokines and increased levels of blood urea nitrogen and creatinine, indicating both systemic inflammation and poor kidney function. Renal tissue showed only mild histological evidence of injury in sepsis. NMR metabolomic analysis identified the involvement of mitochondrial pathways associated with branched-chain amino acid metabolism, fatty acid oxidation, and de novo NAD+ biosynthesis in SA-AKI. Renal cortical gene expression of enzymes associated with those pathways was predominantly suppressed. Renal cortical fatty acid oxidation rates were lower in septic mice with high inflammation, and this correlated with higher serum creatinine levels. Similar to humans, septic mice demonstrated renal dysfunction without significant tissue disruption, pointing to metabolic derangement as an important contributor to SA-AKI pathophysiology. Metabolism of branched-chain amino acid and fatty acids and NAD+ synthesis, which all center on mitochondrial function, appeared to be suppressed. Developing interventions to activate these pathways may provide new therapeutic opportunities for SA-AKI.NEW & NOTEWORTHY NMR-based metabolomics revealed disruptions in branched-chain amino acid metabolism, fatty acid oxidation, and NAD+ synthesis in sepsis-associated acute kidney injury. These pathways represent essential processes for energy provision in renal tubular epithelial cells and may represent targetable mechanisms for therapeutic intervention.


Asunto(s)
Lesión Renal Aguda/sangre , Lesión Renal Aguda/orina , Imagen por Resonancia Magnética/métodos , Metabolómica/métodos , Mitocondrias/metabolismo , Sepsis/complicaciones , Animales , Biomarcadores/sangre , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Inflamación/sangre , Inflamación/metabolismo , Inflamación/orina , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Am J Respir Cell Mol Biol ; 64(2): 216-223, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33253592

RESUMEN

Neutrophils are vital to both the inflammatory cascade and tissue repair after an injury. Neutrophil heterogeneity is well established but there is less evidence for significant, different functional roles for neutrophil subsets. OLFM4 (Olfactomedin-4) is expressed by a subset of neutrophils, and high expression of OLFM4 is associated with worse outcomes in patients with sepsis and acute respiratory distress syndrome. We hypothesized that an increased number of OLFM4+ neutrophils would occur in trauma patients with worse clinical outcomes. To test this, we prospectively enrolled patients who suffered a blunt traumatic injury. Blood was collected at the time of admission, Day 3, and Day 7 and analyzed for the percentage of neutrophils expressing OLFM4. We found that a subset of patients who suffered blunt traumatic injury upregulated their percentage of OLFM4+ neutrophils. Those who upregulated their OLFM4 had an increased length of stay, days in the ICU, and ventilator days. A majority of these patients also suffered from hemorrhagic shock. To establish a potential role for OLFM4+ neutrophils, we used a murine model of hemorrhagic shock because mice also express OLFM4 in a subset of neutrophils. These studies demonstrated that wild type mice had higher concentrations of cytokines in the plasma and myeloperoxidase in the lungs compared with OLFM4-null mice. In addition, we used an anti-OLFM4 antibody, which when given to wild type mice led to the reduction of myeloperoxidase in the lungs of mice. These findings suggest that OLFM4+ neutrophils are a unique subset of neutrophils that affect the inflammatory response after tissue injury.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos/metabolismo , Neutrófilos/metabolismo , Choque Hemorrágico/metabolismo , Regulación hacia Arriba/fisiología , Adulto , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Peroxidasa/metabolismo , Estudios Prospectivos , Sepsis/metabolismo
18.
Front Immunol ; 11: 210, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117320

RESUMEN

Alterations in the energy homeostasis contribute to sepsis-mediated multiple organ failure. The liver plays a central role in metabolism and participates to the innate immune and inflammatory responses of sepsis. Several clinical and experimental studies have suggested that females are less susceptible to the adverse outcome of sepsis. However, underlying mechanisms of organ damage in sepsis remain largely undefined. AMP-activated protein kinase (AMPK) is an important regulator of mitochondrial quality control. The AMPK catalytic α1 isoform is abundantly expressed in the liver. Here, we determined the role of hepatocyte AMPKα1 in sepsis by using hepatocyte-specific AMPKα1 knockout mice (H-AMPKα1 KO) generated with Cre-recombinase expression under the control of the albumin promoter. Using a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP), we observed that male H-AMPKα1 KO mice had higher plasma levels of tumor necrosis factor-α and interleukin-6 and exhibited a more severe liver and lung injury than male H-AMPKα1 WT mice, as evaluated by histology and neutrophil infiltration at 18 h after CLP. Plasma levels of interleukin-10 and the keratinocyte-derived chemokine were similarly elevated in both KO and WT male mice. At transmission electron microscopy analysis, male H-AMPKα1 KO mice exhibited higher liver mitochondrial damage, which was associated with a significant decrease in liver ATP levels when compared to WT mice at 18 h after sepsis. Mortality rate was significantly higher in the male H-AMPKα1 KO group (91%) when compared to WT mice (60%) at 7 days after CLP. Female H-AMPKα1 WT mice exhibited a similar degree of histological liver and lung injury, but significantly milder liver mitochondrial damage and higher autophagy when compared to male WT mice after CLP. Interestingly, H-AMPKα1 KO female mice had lower organ neutrophil infiltration, lower liver mitochondrial damage and lower levels of cytokines than WT female mice. There was no significant difference in survival rate between WT and KO mice in the female group. In conclusion, our study demonstrates that AMPKα1 is a crucial hepatoprotective enzyme during sepsis. Furthermore, our results suggest that AMPK-dependent liver metabolic functions may influence the susceptibility to multiple organ injury in a sex-dependent manner.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Técnicas de Inactivación de Genes/métodos , Hepatocitos/metabolismo , Sepsis/inmunología , Sepsis/mortalidad , Animales , Autofagia/genética , Modelos Animales de Enfermedad , Femenino , Interleucina-6/sangre , Hígado/lesiones , Lesión Pulmonar/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/patología , Infiltración Neutrófila/genética , Sepsis/sangre , Factores Sexuales , Tasa de Supervivencia , Factor de Necrosis Tumoral alfa/sangre
20.
Innate Immun ; 25(1): 22-33, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30537894

RESUMEN

Neutrophils are the most abundant immune cell of the innate immune system and participate in essential immune functions. Heterogeneity within neutrophils has been documented, but it is difficult to distinguish if these are altered activation states of a single population or separate subpopulations of neutrophils determined at the time of differentiation. Several groups have identified a subset of human neutrophils that express olfactomedin 4 (OLFM4) and increased OLFM4+ neutrophils during sepsis is correlated with worse outcome, suggesting these neutrophils or the OLFM4 they secrete may be pathogenic. We tested if mice could be used as a model to study OLFM4+ neutrophils. We found the OLFM4 expressing subset of neutrophils is conserved in mice. Depending on the strain, 7-35% of murine neutrophils express OLFM4 and expression is determined early in neutrophil differentiation. OLFM4+ neutrophils phagocytose and transmigrate with similar efficiency as OLFM4- neutrophils. Here we show that within neutrophil extracellular traps (NETs) OLFM4+ and OLFM4- neutrophils undergo NETosis and OLFM4 colocalizes. Finally, we generated an OLFM4 null mouse and show that these mice are protected from death when challenged with sepsis, providing further evidence that the OLFM4 expressing subpopulation of neutrophils, or the OLFM4 they secrete, may be pathogenic during overwhelming infection.


Asunto(s)
Trampas Extracelulares/metabolismo , Glicoproteínas/metabolismo , Neutrófilos/inmunología , Sepsis/inmunología , Animales , Apoptosis , Diferenciación Celular , Células Cultivadas , Glicoproteínas/genética , Humanos , Inmunidad Innata , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación/genética , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA