Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Chemosphere ; 287(Pt 2): 132139, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34509019

RESUMEN

Long-term uranium mobility in tailings is an environmental management issue. The present study focuses on two U-enriched layers, surficial and buried 14.5 m, of the tailings pile of Cominak, Niger. The acidic and oxidizing conditions of the tailings pile combined with evapotranspiration cycles related to the Sahelian climate control U speciation. Uraninite, brannerite, and moluranite as well as uranophane are relict U phases. EXAFS spectroscopy, HR-XRD, and SEM/WDS highlight the major role of uranyl sulfate groups in uranium speciation. Uranyl phosphate neoformation in the buried layer (paleolayer) acts as an efficient trap for uranium.


Asunto(s)
Uranio , Niger , Fosfatos , Sulfatos , Óxidos de Azufre , Uranio/análisis
2.
Chemosphere ; 264(Pt 1): 128473, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33035952

RESUMEN

Investigating uranium migration mechanisms related to the weathering of waste rocks is essential for developing strategies that can address the potential environmental issues caused by uranium mining. This work is based on environmental samples containing 2 L ferrihydrite, lepidocrocite and goethite collected in the technosols from granitic waste rock piles, mine drainage conduits and mine waters. The results show the important role of iron oxyhydroxide in U immobilization and re-concentration. EXAFS spectroscopy combined with mineralogical and geochemical studies (Scanning electronic microscopy, Wavelength-dispersive X-ray spectroscopy microprobe, inductively coupled plasma - optical emission spectrometry/mass spectrometry and X-ray diffraction) allowed for the identification of uranyl ternary surface complexes at the ferrihydrite surface that were either composed of phosphate groups or organic matter. Moreover, goethite and lepidocrocite were also identified as a secondary trap for U immobilization. U(VI) is known to be mobile in oxidizing conditions. This study highlights the control of the uranyl mobility by various iron oxyhydroxides in supergene conditions.


Asunto(s)
Uranio , Compuestos Férricos , Minería , Espectrometría por Rayos X , Uranio/análisis , Difracción de Rayos X
3.
Inorg Chem ; 59(1): 128-137, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31577430

RESUMEN

Plutonium (Pu) is an anthropogenic element involved in the nuclear industry cycle. Located at the bottom of the periodic table within the actinide family, it is a chemical toxic but also a radiological toxic, regardless of isotopy. After nearly 80 years of Pu industrialization, it has become clear that inhalation and wounds represent the two main ways a person may become contaminated after an accident. In order to reduce the deleterious health effects of Pu, it is crucial to limit chronic exposure by removing it or preventing its incorporation into the body. Diethylenetriaminepentaacetic acid (DTPA) has emerged as the gold standard for Pu decorporation, although it suffers from very short retention time in serum. Other molecules like the hydroxypyridonate family with high chemical affinity have also been considered. We have been considering alternative polymeric chelates and, in particular, polyethylenimine (PEI) analogues of DTPA (the carbonate or phosphonate version), which may present a real breakthrough in Pu decorporation not only because of their higher loading capacity but also because of their indirect vectorization properties correlated with a specific biodistribution into the lungs, bone, kidney, or liver. In the first part of this Forum Article, new data on the structural characterization of the complexation of PuIV with polyethylenimine methylphosphonate (PEI-MP) were obtained using the combination of extended X-ray absorption fine structure spectroscopy and ab initio molecular dynamics (AIMD) calculations. The use of thorium (Th) as a Pu chemical surrogate is also discussed because its unique oxidation state is IV+ in solution. In the second part of the paper, we put this new set of data on PEI-MP-Pu into perspective with use of the PEI platform to complex ThIV and PuIV. Uptake curves of ThIV witth polyethylenimine methylcarboxylate (PEI-MC) are compared with those of PEI-MP and DTPA, and the AIMD data are discussed.

4.
RSC Adv ; 9(21): 11762-11773, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35517003

RESUMEN

Investigation of uranium migration in the waste piles of granite rock in the Limousin region of France is vital for developing strategies which address related environmental issues. Despite the fact that the concentration of uranium is far below the lower end of the cut off level in these piles, the large volume of rocks - which measure in the hundreds of metric tons - and their conditions of repository make this type of waste a source of concern for the international community. In this work, X-ray absorption spectroscopy techniques (XAFS) were employed in order to identify the speciation of uranium in the different categories of samples collected from various regions of the rock piles which had undergone 50 years of weathering. The samples, such as weathered granite, arena and technosoils, were studied in order to probe the transformation of the U bearing complex. XANES indicates U(vi) valence with uranyl species in all samples. Using a linear combination analysis and shell fitting approach, distinct speciation of uranium was observed in the different categories of samples. In the weathered rock and arena samples with relics of magmatic U minerals, uranyl phosphates comparable to autunite are shown to be dominantly linked with monodentate PO4 3-. However, the samples collected from technosoils are found to have a mixture of U-phosphate and U-clay minerals (phyllosilicates and silicates). Irrespective of the collection location, all the samples were found to contain U(vi)-oxo species The equatorial O ligands occur as two shells with an average separation of 0.14-0.21 Å. Moreover, all the samples have an Al/Si/P shell around 3.1 Å. A detailed EXAFS curve fit analysis shows that disorder afflicts the entire range of samples which can be attributed to either inhomogeneous binding sites on the disordered clay minerals or to the presence of a mixture of uranium-bearing minerals. XAFS investigations highlight the uranyl overriding forms of U (as U sorbed on clay minerals and secondary uranyl phosphates or silicates) contribute to the retention of U, even in oxidizing conditions known to enhance the mobility of U.

5.
Chem Commun (Camb) ; 54(83): 11705-11708, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30276368

RESUMEN

Up until now, molecular chelating agents, such as diethylenetriamine pentaacetic acid (DTPA), have been the standard method for actinide human decorporation. Mainly active in blood serum, their distribution within the body is thus limited. To treat a wider range of organs affected by plutonium contamination, a potential new class of macromolecular decorporation agents is being studied. Polyethyleneimine methylenecarboxylate (PEI-MC) is one such example. It is being considered here because of its capacity for targeting the liver and bones.

6.
Dalton Trans ; 46(40): 13869-13877, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28971198

RESUMEN

The use of uranium and to a minor extent plutonium as fuel for nuclear energy production or as components in military applications is under increasing public pressure. Uranium is weakly radioactive in its natural isotopy but its chemical toxicity, combined with its large scale industrial utilization, makes it a source of concern in terms of health impact for workers and possibly the general population. Plutonium is an artificial element that exhibits both chemical and radiological toxicities. So far, uranium (under its form uranyl, U(vi)) or plutonium (as Pu(iv)) decorporation or protecting strategies based on molecular design have been of limited efficiency to remove the actinide once incorporated after human exposure. In all cases, after human exposure, plutonium and uranium are retained in main target organs (liver, kidneys) as well as skeleton although they exhibit differences in their biodistribution. Polymers could represent an alternative strategy as their tropism for specific target organs has been reported. We recently reported on the complexation properties of methylcarboxylated polyethyleneimine (PEI-MC) with uranyl. In this report we extend our work to methylphosphonated polyethyleneimine (PEI-MP) and to the comparison between actinide oxidation states +IV (thorium) and +VI (uranyl). As a first step, thorium (Th(iv)) was used as a chemical surrogate of plutonium because of the difficulty in handling the latter in the laboratory. For both cations, U(vi) and Th(iv), the uptake curve of PEI-MP was recorded. The functionalized PEI-MP exhibits a maximum loading capacity comprised of between 0.56 and 0.80 mg of uranium (elemental) and 0.15-0.20 mg of thorium (elemental) per milligram of PEI-MP. Complexation sites of U(vi) and Th(iv) under model conditions close to physiological pH were then characterized with a combination of Fourier transform Infra Red (FT-IR) and Extended X-Ray Absorption Fine Structure (EXAFS). Although both cations exhibit different coordination modes, similar structural parameters with phosphonate functions were obtained. For example, the coordination sites are composed of fully monodentate phosphonate functions of the polymer chains. These physical chemical data represent a necessary basic chemistry approach before envisioning further biological evaluations of PEI-MP polymers towards U(vi) and Pu/Th(iv) contamination.


Asunto(s)
Elementos de Series Actinoides/química , Quelantes/metabolismo , Compuestos Organofosforados/química , Polietileneimina/química , Elementos de Series Actinoides/metabolismo , Quelantes/síntesis química , Quelantes/química , Humanos , Plutonio/química , Plutonio/metabolismo , Exposición a la Radiación , Espectroscopía Infrarroja por Transformada de Fourier , Torio/química , Torio/metabolismo , Uranio/química , Uranio/metabolismo
7.
Inorg Chem ; 56(3): 1300-1308, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-28094512

RESUMEN

Natural uranium has a very limited radioactive dose impact, but its chemical toxicity due to chronic exposure is still a matter of debate. Once inside the human body, the soluble uranium, under its uranyl form (U(VI)), is quickly removed from the blood system, partially excreted from the body, and partially retained in targeted organs, that is, the kidneys and bone matrix essentially. It is then crucial to remove or prevent the incorporation of uranium in these organs to limit the long-term chronic exposure. A lot of small chelating agents such as aminocarboxylates, catecholamides, and hydroxypyridonates have been developed so far. However, they suffer from poor selectivity and targeting abilities. Macromolecules and polymers are known to present a passive accumulation (size related), that is, the so-called enhanced permeability and retention effect, toward the main organs, which can be used as indirect targeting. Very interestingly, the methyl carboxylated polyethylenimine (PEI-MC) derivative has been described as a potent sequestering agent for heavy metals. It would be therefore an interesting candidate to evaluate as a new class of decorporation agents with passive targeting capabilities matching uranium preferential sequestering sites. In the present work, we explored the ability of a highly functionalized (89% rate) PEI-MC to uptake U(VI) close to physiological pH using a combination of analytical and spectroscopic techniques (inductively coupled plasma optical emission spectrometry (ICP-OES); extended X-ray absorption fine structure (EXAFS); and Fourier transformed infrared (FT-IR)) together with molecular dynamics (MD) simulation. A maximum loading of 0.47 mg U(VI) per milligram of PEI-MC was determined by ICP-OES measurements. From FT-IR data, a majority of monodentate coordination of the carboxylate functions of the PEI-MC seems to occur. From EXAFS and MD, a mix of mono and bidentate coordination mode was observed. Note that agreement between the EXAFS metrical parameters and MD radial distribution functions is remarkable. To the best of our knowledge, this is the first comprehensive structural study of a macromolecular PEI-based agent considered for uranium decorporation purposes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA