Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Food Res Int ; 173(Pt 2): 113461, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803791

RESUMEN

The increasing demand for tea consumption calls for the development of more products with distinct characteristics. The sensory quality of tencha is significantly determined by innate differences among tea cultivars. However, the correlations between the chemical composition and sensory traits of tencha are still unclear. To enhance the understanding of the flavor formation mechanism in tencha and further to develop new cultivars resources, we investigated non-volatiles and volatile metabolites as well as sensory traits in tencha from different tea cultivars (Camellia sinensis cv. Yabukita, Longjing 43 and Baiye 1); the relationships between the flavor traits and non-volatiles/volatiles were further evaluated by partial least squares - discriminate analysis (PLS-DA), multiple factor analysis (MFA) and multidimensional alignment (MDA) analysis. A total of 64 non-volatiles and 116 volatiles were detected in all samples, among which 71 metabolites were identified as key flavor-chemical contributors involving amino acids, flavonol glycosides, flavones, catechins, ketones, alcohols, hydrocarbons, aldehydes, esters and acids. The levels of taste-related amino acids, flavonol glycosides and gallic acid varied significantly among the tencha samples made from different tea cultivars. All the samples exhibited typical quality characteristics of tencha. The tencha from Camellia sinensis cv. Longjing 43 and Camellia sinensis cv. Baiye 1 (cultivated in the open) exhibited higher levels of amino acids and gallic acid, which were associated with the umami taste and mellow taste of tea infusion. Abundant flavonol glycosides were related to the astringency, while partial tri-glycosides specifically quercetin-3-O-galactoside-rhamnoside-glucoside and total of flavonol galactoside-rhamnoside-glucoside were associated with mellow taste. The floral alcohols were identified as significant contributors to the refreshing aroma traits of tencha. The green, almond-like, acidic and fruity odorants were associated with a green and fresh aroma, while the green, cheesy and waxy odorants such as ketones, esters, acids and hydrocarbons were associated with seaweed-like aroma. This study provides insight into sensory-related chemical profiles of tencha from different tea cultivars, supplying valuable information on flavor and quality identification for tencha.


Asunto(s)
Camellia sinensis , Camellia sinensis/química , Té/química , Quimiometría , Flavonoles/análisis , Aminoácidos/metabolismo , Glicósidos/análisis , Ácidos , Alcoholes/análisis , Ácido Gálico/análisis , Glucósidos/metabolismo , Cetonas/análisis
2.
Food Chem ; 276: 93-100, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30409668

RESUMEN

l-Theanine is a specialized metabolite in tea (Camellia sinensis) leaves that contributes to tea function and quality. Yellow tea leaves (albino) generally have higher l-theanine contents than green tea leaves (normal), but the reason is unknown. The objective of this study was to investigate why l-theanine is accumulated in yellow tea leaves. We compared original normal leaves (green) and light-sensitive albino leaves (yellow) of cv. Yinghong No. 9. The l-theanine content was significantly higher in yellow leaves than in green leaves (p ≤ 0.01). After supplementation with [2H5]-l-theanine, yellow leaves catabolized less [2H5]-l-theanine than green leaves (p ≤ 0.05). Furthermore, most plants contained the enzyme catalyzing l-theanine conversion to ethylamine and l-glutamic acid. In conclusion, l-theanine accumulation in albino-induced yellow tea leaves was due to weak l-theanine catabolism. The differential accumulation mechanism differed from the l-theanine accumulation mechanism in tea and other plants.


Asunto(s)
Camellia sinensis/química , Glutamatos/análisis , Hojas de la Planta/química , Camellia sinensis/metabolismo , Etilaminas/análisis , Etilaminas/metabolismo , Glutamatos/metabolismo , Ácido Glutámico/análisis , Ácido Glutámico/metabolismo , Hidrolasas/metabolismo , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA