Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Immunol ; 21(7): 752-769, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38822080

RESUMEN

The development of distinct dendritic cell (DC) subsets, namely, plasmacytoid DCs (pDCs) and conventional DC subsets (cDC1s and cDC2s), is controlled by specific transcription factors. IRF8 is essential for the fate specification of cDC1s. However, how the expression of Irf8 is regulated is not fully understood. In this study, we identified TRIM33 as a critical regulator of DC differentiation and maintenance. TRIM33 deletion in Trim33fl/fl Cre-ERT2 mice significantly impaired DC differentiation from hematopoietic progenitors at different developmental stages. TRIM33 deficiency downregulated the expression of multiple genes associated with DC differentiation in these progenitors. TRIM33 promoted the transcription of Irf8 to facilitate the differentiation of cDC1s by maintaining adequate CDK9 and Ser2 phosphorylated RNA polymerase II (S2 Pol II) levels at Irf8 gene sites. Moreover, TRIM33 prevented the apoptosis of DCs and progenitors by directly suppressing the PU.1-mediated transcription of Bcl2l11, thereby maintaining DC homeostasis. Taken together, our findings identified TRIM33 as a novel and crucial regulator of DC differentiation and maintenance through the modulation of Irf8 and Bcl2l11 expression. The finding that TRIM33 functions as a critical regulator of both DC differentiation and survival provides potential benefits for devising DC-based immune interventions and therapies.


Asunto(s)
Proteína 11 Similar a Bcl2 , Diferenciación Celular , Células Dendríticas , Homeostasis , Factores Reguladores del Interferón , Ratones Endogámicos C57BL , Factores de Transcripción , Animales , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Células Dendríticas/metabolismo , Células Dendríticas/citología , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Transcripción Genética , Apoptosis , ARN Polimerasa II/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Transactivadores/metabolismo , Transactivadores/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Ratones Noqueados , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología
2.
Elife ; 122023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38011375

RESUMEN

Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology; however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasas , Ratones , Animales , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Diferenciación Celular/genética , Células Dendríticas
3.
J Immunol ; 207(6): 1683-1693, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34400525

RESUMEN

Alveolar macrophages (AMs) play critical roles in maintaining lung homeostasis and orchestrating the immune responses. Although the essential factors known for AM development have been identified, currently an optimal in vitro culture system that can be used for studying the development and functions of AMs is still lacking. In this study, we report the development of an optimized culture system for generating AM-like cells from adult mouse bone marrow and fetal liver cells on in vitro culture in the presence of a combination of GM-CSF, TGF-ß, and peroxisome proliferator-activated receptor γ (PPAR-γ) agonist rosiglitazone. These AM-like cells expressed typical AM surface markers sialic acid-binding Ig-like lectin-F (Siglec-F), CD11c, and F4/80, and AM-specific genes, including carbonic anhydrase 4 (Car4), placenta-expressed transcript 1 (Plet1), eosinophil-associated RNase A family member 1 (Ear1), cell death-inducing DNA fragmentation factor A-like effector c (Cidec), and cytokeratin 19 (Krt19). Similar to primary AMs, the AM-like cells expressed alternative macrophage activation signature genes and self-renewal genes. Moreover, this culture system could be used for expansion of bronchoalveolar lavage fluid-derived AMs in vitro. The AM-like cells generated from bone marrow resembled the expanded bronchoalveolar lavage fluid-derived AMs in inflammatory responses and phagocytic activity. More importantly, these AM-like cells could be obtained in sufficient numbers that allowed genetic manipulation and functional analysis in vitro. Taken together, we provide a powerful tool for studying the biology of AMs.


Asunto(s)
Pulmón , Macrófagos Alveolares , Animales , Líquido del Lavado Bronquioalveolar , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta
4.
AAPS PharmSciTech ; 20(8): 312, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31529266

RESUMEN

To enhance efficiency, convenience, and safety of Parkinson's disease (PD) treatment for geriatric patients, an advanced suspension of Levodopa/Benserazide hydrochloride (LD/BH) has been prepared by cation-exchange resin and used to synchronize sustained release of LD and BH by optimizing coating parameters and prescription. For the purpose, LD and BH were immobilized on the surface of cation-exchange resin, respectively. Based on HPLC results, the cation-exchange resin showed high loading capacity. The studies on drug loading mechanism indicated that both drugs were immobilized by electrostatic interaction rather than physical adsorption. After PEG modification, pretreated drug-resin complexes were coated by emulsion-solvent evaporation method. In order to control drug release in a sustained manner, coating parameters of drug-resin microcapsules were optimized respectively by single-factor analysis. Further, coating prescription of the microcapsules was optimized to synchronize sustained release of LD and BH in vitro by orthogonal design. Utilizing optimal LD-resin microcapsules and BH-resin microcapsules, LD/BH suspension, containing both of them, was prepared by an optimal formulation and characterized by accelerated test and pharmacokinetic study in vivo. The accelerated test confirmed high stability of LD/BH suspension. According to pharmacokinetic results in vivo, in contrast with LD/BH commercial tablets, LD/BH suspensions did not only synchronize sustained release of both drugs but also show good bioequivalence. As LD/BH sustained release suspension can synchronize sustained release of multiple active ingredients by oral administration, the suspension presents promising oral dosage forms for geriatric patients with PD. An advanced Levodopa/Benserazide hydrochloride (LD/BH) suspension, prepared by cation-exchange resin and optimized microencapsulation, synchronizes sustained releases of LD and BH in vivo to benefit Parkinson's disease treatment for geriatric patients.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/química , Benserazida/administración & dosificación , Benserazida/química , Levodopa/administración & dosificación , Levodopa/química , Administración Oral , Animales , Antiparkinsonianos/farmacocinética , Benserazida/farmacocinética , Cápsulas , Resinas de Intercambio de Catión , Preparaciones de Acción Retardada , Combinación de Medicamentos , Composición de Medicamentos , Levodopa/farmacocinética , Lípidos/química , Masculino , Ratas , Suspensiones , Comprimidos Recubiertos
5.
Int J Pharm ; 528(1-2): 322-333, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28606508

RESUMEN

The major obstacles opposed to doxorubicin (Dox) based chemotherapy are the induction of drug resistance, together with non-specific toxicities for healthy cells. In this study, we prepared a peptide-Dox conjugate aimed at offering Dox molecules a tumor-specific functionality and improving the therapeutic effects of Dox against resistant tumor cells. A slightly acidic pH-sensitive peptide (SAPSP) with high selectivity for cancer cells was attached to Dox to obtain SAPSP-Dox prodrug. The structures and properties of this prodrug were characterized, confirming several merits, including desirable pH-sensitive property, good serum stability and favorable release behavior. Cellular uptake studies demonstrated that SAPSP-Dox was preferably accumulated in cancer cells (Dox-sensitive MCF-7 and Dox-resistant MCF-7/ADR), followed by displaying 26-fold less toxic toward noncancerous MCF-10A cells than free Dox do. The conjugated peptides enabled Dox to escape the efflux effect of P-glycoprotein mediated pump via endocytotic pathway, giving rise to remarkable cytotoxicity and apoptotic effect on MCF-7/ADR cells. Moreover, the superior inhibition efficacy of SAPSP-Dox in vivo was more evident in the both drug-sensitive and drug-resistant xenograft tumor animal models, which enabled Dox to primarily accumulated in tumor. The conjugates also demonstrated a longer half-life in plasma and a lower side effect, for example, reduced cardiac toxicity. Evidence of this study suggests that SAPSP-Dox has the potential to be a potent prodrug for treating drug resistant cancers.


Asunto(s)
Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Péptidos/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7 , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
6.
J Immunol Methods ; 432: 24-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26876301

RESUMEN

Dendritic cells (DC) that can orchestrate immune responses and maintain host homeostasis, are indispensable components of the immune system. Although distributed widely in many lymphoid and non-lymphoid tissues, their rarity in number has become a limiting factor for DC related research and therapies. Therefore, methods for efficiently generating large numbers of DC resembling their in vivo counterparts are urgently needed for DC related research and therapies. Herein we summarize the current methods for generating mouse and human DC in vitro and hope that these will facilitate both studies of DC biology and their clinical applications.


Asunto(s)
Diferenciación Celular , Células Dendríticas/inmunología , Animales , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Fenotipo , Especificidad de la Especie
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 32(6): 1255-60, 2015 Dec.
Artículo en Chino | MEDLINE | ID: mdl-27079097

RESUMEN

Atherosclerosis is a complex disease characterized by lipid accumulation in the vascular wall and influenced by multiple genetic and environmental factors. To understand the mechanisms of molecular regulation related to atherosclerosis better, a protein interaction network was constructed in the present study. Genes were collected in nucleotide database and interactions were downloaded from Biomolecular Object Network Database (BOND). The interactional data were imported into the software Cytoscape to construct the interaction network, and then the degree characteristics of the network were analyzed for Hub proteins. Statistical significance pathways and diseases were figured out by inputting Hub proteins to KOBAS2. 0. The complete pathway network related to atherosclerosis was constructed. The results identified a series of key genes related to atherosclerosis, which would be the potential promising drug targets for effective prevention.


Asunto(s)
Aterosclerosis/genética , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Bases de Datos Factuales , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA