Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Neurology ; 102(7): e209258, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38484275

RESUMEN

We describe the case of a 19-month-old girl presenting with gross motor delays, hypotonia, diminished deep tendon reflexes, hyperCKaemia, extensive white matter changes on MRI brain, and electromyography studies consistent with myopathy. The differential diagnosis for infantile-onset hypotonia and muscle weakness is broad. It includes numerous subtypes of genetic disorders, including congenital muscular dystrophies, congenital myopathies, congenital myasthenic syndromes, spinal muscular atrophy, single-gene genetic syndromes, and inborn errors of metabolism. We outline our clinical approach leading to the diagnosis of a distinctive genetic neuromuscular condition essential for neurologists and geneticists working with patients of all ages to recognize.


Asunto(s)
Enfermedades Musculares , Distrofias Musculares , Sustancia Blanca , Femenino , Humanos , Lactante , Hipotonía Muscular/etiología , Sustancia Blanca/diagnóstico por imagen , Enfermedades Musculares/genética , Distrofias Musculares/genética , Razonamiento Clínico
2.
Mol Genet Metab Rep ; 37: 101004, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053933

RESUMEN

Background: Biotin-Thiamine-Responsive Basal Ganglia Disease (BTBGD) is a treatable neurometabolic condition associated with pathogenic variants in the SLC19A3 gene. The classical childhood-onset phenotype presents at a mean age of 4 years, ranging from birth to 12 years. These patients present with subacute encephalopathy, dysarthria, dysphagia, dystonia, external ophthalmoplegia, seizures, quadriparesis, and even death. Chronically, an MRI brain reveals atrophy and necrosis of the basal ganglia. Case report: A 16-year-old girl presented in the context of pneumonia with gradual-onset, slowly progressive neurological symptoms. These initial symptoms self-resolved, without treatment with biotin or thiamine, though she had persistent concerns with her writing and memory. MRI brain noted bilateral abnormal signals in the basal ganglia, involving the head and body of the caudate nuclei and the putamen. Whole-exome sequencing (WES) revealed homozygosity for a likely pathogenic variant in the SLC19A3 gene, c.517A > G (p.N173D). Her residual neurological symptoms resolved with biotin and thiamine treatment, with the exception of ongoing memory concerns. Conclusion: We describe a patient presenting with an atypical form of the classical childhood-onset phenotype of BTBGD. Our case emphasizes that BTBGD is a condition that should be considered as a potential diagnosis in all children, including older children, presenting with the new onset of even minor neurological deficits in the context of illness. It highlights the importance of brain MRI and WES in identifying patients with atypical presentations.

3.
Ther Adv Rare Dis ; 4: 26330040221150269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37181075

RESUMEN

Phosphoglucomutase-1-congenital disorder of glycosylation (PGM1-CDG) (OMIM: 614921) is a rare autosomal recessive inherited metabolic disease caused by the deficiency of the PGM1 enzyme. Like other CDGs, PGM1-CDG has a multisystemic presentation. The most common clinical findings include liver involvement, rhabdomyolysis, hypoglycemia, and cardiac involvement. Phenotypic severity can vary, though cardiac presentation is usually part of the most severe phenotype, often resulting in early death. Unlike the majority of CDGs, PGM1-CDG has a treatment: oral D-galactose (D-gal) supplementation, which significantly improves many aspects of the disorder. Here, we describe five PGM1-CDG patients treated with D-gal and report both on novel clinical symptoms in PGM1-CDG as well as the effects of the D-gal treatment. D-gal resulted in notable clinical improvement in four patients, though the efficacy of treatment varied between the patients. Furthermore, there was a significant improvement or normalization in transferrin glycosylation, liver transaminases and coagulation factors in three patients, creatine kinase (CK) levels in two, while hypoglycemia resolved in two patients. One patient discontinued the treatment due to urinary frequency and lack of clinical improvement. Furthermore, one patient experienced recurrent episodes of rhabdomyolysis and tachycardia even on higher doses of therapy. D-gal also failed to improve the cardiac function, which was initially abnormal in three patients, and remains the biggest challenge in treating PGM1-CDG. Together, our findings expand the phenotype of PGM1-CDG and underline the importance of developing novel therapies that would specifically treat the cardiac phenotype in PGM1-CDG.


An update on benefits and challenges of treating PGM1-CDG with galactose PGM1-CDG is a rare genetic disorder that affects glycosylation, an important biochemical process happening in every cell of the body. Because glycosylation is essential for correct functioning of the cells and happens in every tissue and organ, patients with PGM1-CDG can have a variety of symptoms affecting many different organs. Main symptoms include low blood glucose levels, hyperinsulinism, bleeding disorder, liver, muscle, heart problems, and so on. This disorder is usually diagnosed based on the genetic testing, patient's symptoms, and transferrin glycosylation test, which detects abnormalities in glycosylation in blood. So far, more than 60 patients have been reported. Unlike many genetic disorders, PGM1-CDG has a treatment in the form of a sugar called galactose, which naturally occurs in milk, and can treat many symptoms of the disorder. The patients are advised to take it every day by mouth in the form of powder. Here, we describe five more patients with PGM1-CDG, who were treated with galactose. Each of the patients had novel symptoms and they responded to the treatment differently, which helps us to better understand the disorder and the effects of therapy better. We found that many symptoms improved or normalized; however, some patients experienced persistent symptoms and even adverse events that made them stop treatment. Unfortunately, we did not observe any improvement of heart-related issues. Given that heart issues are the most severe aspect of PGM1-CDG and can result in early death, therapies that target heart issues in PGM1-CDG are still necessary. In conclusion, we describe novel aspects of PGM1-CDG, which will help understand and diagnose the disorder better, and highlight the importance of developing new therapies for this disorder that would specifically treat the heart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA