Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 15(1): 4695, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824138

RESUMEN

Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-ß (Aß) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aß in the early stages of aggregation and then fall away as fibrillation happens. ApoE-Aß co-aggregates account for ~50% of the mass of diffusible Aß aggregates detected in the frontal cortices of homozygotes with the higher-risk APOE4 gene. We show how dynamic interactions between apoE and Aß tune disease-related functions of Aß aggregates throughout the course of aggregation. Our results connect inherited APOE genotype with the risk of developing AD by demonstrating how, in an isoform- and lipidation-specific way, apoE modulates the aggregation, clearance and toxicity of Aß. Selectively removing non-lipidated apoE4-Aß co-aggregates enhances clearance of toxic Aß by glial cells, and reduces secretion of inflammatory markers and membrane damage, demonstrating a clear path to AD therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Apolipoproteína E4 , Apolipoproteínas E , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Humanos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Animales , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Ratones , Femenino , Agregado de Proteínas , Masculino , Agregación Patológica de Proteínas/metabolismo , Ratones Transgénicos , Neuroglía/metabolismo
2.
Angew Chem Int Ed Engl ; 63(21): e202317756, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38523073

RESUMEN

Hyperphosphorylation and aggregation of the protein tau play key roles in the development of Alzheimer's disease (AD). While the molecular structure of the filamentous tau aggregates has been determined to atomic resolution, there is far less information available about the smaller, soluble aggregates, which are believed to be more toxic. Traditional techniques are limited to bulk measures and struggle to identify individual aggregates in complex biological samples. To address this, we developed a novel single-molecule pull-down-based assay (MAPTau) to detect and characterize individual tau aggregates in AD and control post-mortem brain and biofluids. Using MAPTau, we report the quantity, as well as the size and circularity of tau aggregates measured using super-resolution microscopy, revealing AD-specific differences in tau aggregate morphology. By adapting MAPTau to detect multiple phosphorylation markers in individual aggregates using two-color coincidence detection, we derived compositional profiles of the individual aggregates. We find an AD-specific phosphorylation profile of tau aggregates with more than 80 % containing multiple phosphorylations, compared to 5 % in age-matched non-AD controls. Our results show that MAPTau is able to identify disease-specific subpopulations of tau aggregates phosphorylated at different sites, that are invisible to other methods and enable the study of disease mechanisms and diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Agregado de Proteínas , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/análisis , Fosforilación , Imagen Individual de Molécula/métodos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología
3.
Mol Psychiatry ; 29(2): 369-386, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38102482

RESUMEN

Understanding the role of small, soluble aggregates of beta-amyloid (Aß) and tau in Alzheimer's disease (AD) is of great importance for the rational design of preventative therapies. Here we report a set of methods for the detection, quantification, and characterisation of soluble aggregates in conditioned media of cerebral organoids derived from human iPSCs with trisomy 21, thus containing an extra copy of the amyloid precursor protein (APP) gene. We detected soluble beta-amyloid (Aß) and tau aggregates secreted by cerebral organoids from both control and the isogenic trisomy 21 (T21) genotype. We developed a novel method to normalise measurements to the number of live neurons within organoid-conditioned media based on glucose consumption. Thus normalised, T21 organoids produced 2.5-fold more Aß aggregates with a higher proportion of larger (300-2000 nm2) and more fibrillary-shaped aggregates than controls, along with 1.3-fold more soluble phosphorylated tau (pTau) aggregates, increased inflammasome ASC-specks, and a higher level of oxidative stress inducing thioredoxin-interacting protein (TXNIP). Importantly, all this was detectable prior to the appearance of histological amyloid plaques or intraneuronal tau-pathology in organoid slices, demonstrating the feasibility to model the initial pathogenic mechanisms for AD in-vitro using cells from live genetically pre-disposed donors before the onset of clinical disease. Then, using different iPSC clones generated from the same donor at different times in two independent experiments, we tested the reproducibility of findings in organoids. While there were differences in rates of disease progression between the experiments, the disease mechanisms were conserved. Overall, our results show that it is possible to non-invasively follow the development of pathology in organoid models of AD over time, by monitoring changes in the aggregates and proteins in the conditioned media, and open possibilities to study the time-course of the key pathogenic processes taking place.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Síndrome de Down , Células Madre Pluripotentes Inducidas , Organoides , Proteínas tau , Humanos , Organoides/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Proteínas tau/metabolismo , Síndrome de Down/metabolismo , Síndrome de Down/genética , Síndrome de Down/patología , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Trisomía/genética , Estrés Oxidativo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Medios de Cultivo Condicionados , Microscopía Fluorescente/métodos
5.
Cell Rep ; 42(7): 112725, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37393617

RESUMEN

Tau is a soluble protein interacting with tubulin to stabilize microtubules. However, under pathological conditions, it becomes hyperphosphorylated and aggregates, a process that can be induced by treating cells with exogenously added tau fibrils. Here, we employ single-molecule localization microscopy to resolve the aggregate species formed in early stages of seeded tau aggregation. We report that entry of sufficient tau assemblies into the cytosol induces the self-replication of small tau aggregates, with a doubling time of 5 h inside HEK cells and 1 day in murine primary neurons, which then grow into fibrils. Seeding occurs in the vicinity of the microtubule cytoskeleton, is accelerated by the proteasome, and results in release of small assemblies into the media. In the absence of seeding, cells still spontaneously form small aggregates at lower levels. Overall, our work provides a quantitative picture of the early stages of templated seeded tau aggregation in cells.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Ratones , Animales , Proteínas tau/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Citosol/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Agregado de Proteínas
6.
Nat Commun ; 13(1): 5512, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127374

RESUMEN

Soluble α-synuclein aggregates varying in size, structure, and morphology have been closely linked to neuronal death in Parkinson's disease. However, the heterogeneity of different co-existing aggregate species makes it hard to isolate and study their individual toxic properties. Here, we show a reliable non-perturbative method to separate a heterogeneous mixture of protein aggregates by size. We find that aggregates of wild-type α-synuclein smaller than 200 nm in length, formed during an in vitro aggregation reaction, cause inflammation and permeabilization of single-liposome membranes and that larger aggregates are less toxic. Studying soluble aggregates extracted from post-mortem human brains also reveals that these aggregates are similar in size and structure to the smaller aggregates formed in aggregation reactions in the test tube. Furthermore, we find that the soluble aggregates present in Parkinson's disease brains are smaller, largely less than 100 nm, and more inflammatory compared to the larger aggregates present in control brains. This study suggests that the small non-fibrillar α-synuclein aggregates are the critical species driving neuroinflammation and disease progression.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Encéfalo/metabolismo , Humanos , Liposomas/metabolismo , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo
7.
Nat Protoc ; 17(11): 2570-2619, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36002768

RESUMEN

Single-molecule localization microscopy (SMLM) leverages the power of modern optics to unleash ultra-precise structural nanoscopy of complex biological machines in their native environments as well as ultra-sensitive and high-throughput medical diagnostics with the sensitivity of a single molecule. To achieve this remarkable speed and resolution, SMLM setups are either built by research laboratories with strong expertise in optical engineering or commercially sold at a hefty price tag. The inaccessibility of SMLM to life scientists for technical or financial reasons is detrimental to the progress of biological and biomedical discoveries reliant on super-resolution imaging. In this work, we present the NanoPro, an economic, high-throughput, high-quality and easy-to-assemble SMLM for super-resolution imaging. We show that our instrument performs similarly to the most expensive, best-in-class commercial microscopes and rivals existing open-source microscopes at a lower price and construction complexity. To facilitate its wide adoption, we compiled a step-by-step protocol, accompanied by extensive illustrations, to aid inexperienced researchers in constructing the NanoPro as well as assessing its performance by imaging ground-truth samples as small as 20 nm. The detailed visual instructions make it possible for students with little expertise in microscopy engineering to construct, validate and use the NanoPro in <1 week, provided that all components are available.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Humanos , Imagen Individual de Molécula/métodos
8.
Biophys Rep (N Y) ; 2(1): None, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35299715

RESUMEN

Super-resolution microscopy allows complex biological assemblies to be observed with remarkable resolution. However, the presence of uneven Gaussian-shaped illumination hinders its use in quantitative imaging or high-throughput assays. Methods developed to circumvent this problem are often expensive, hard to implement, or not applicable to total internal reflection fluorescence imaging. We herein demonstrate a cost-effective method to overcome these challenges using a small square-core multimodal optical fiber as the coupler. We characterize our method with synthetic, recombinant, and cellular systems imaged under total internal reflection fluorescence and highly inclined and laminated optical sheet illuminations to demonstrate its ability to produce highly uniform images under all conditions.

9.
Brain ; 145(2): 632-643, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-34410317

RESUMEN

Aggregation of α-synuclein plays a key role in the development of Parkinson's disease. Soluble aggregates are present not only within human brain but also the CSF and blood. Characterizing the aggregates present in these biofluids may provide insights into disease mechanisms and also have potential for aiding diagnosis. We used two optical single-molecule imaging methods called aptamer DNA-PAINT and single-aggregate confocal fluorescence, together with high-resolution atomic force microscopy for specific detection and characterization of individual aggregates with intermolecular ß-sheet structure, present in the CSF and serum of 15 early stage Parkinson's disease patients compared to 10 healthy age-matched controls. We found aggregates ranging in size from 20 nm to 200 nm, in both CSF and serum. There was a difference in aggregate size distribution between Parkinson's disease and control groups with a significantly increased number of larger aggregates (longer than 150 nm) in the serum of patients with Parkinson's disease. To determine the chemical composition of the aggregates, we performed aptamer DNA-PAINT on serum following α-synuclein and amyloid-ß immunodepletion in an independent cohort of 11 patients with early stage Parkinson's disease and 10 control subjects. ß-Sheet aggregates in the serum of Parkinson's disease patients were found to consist of, on average, 50% α-synuclein and 50% amyloid-ß in contrast to 30% α-synuclein and 70% amyloid-ß in control serum [the differences in the proportion of these aggregates were statistically significant between diseased and control groups (P = 1.7 × 10-5 for each species)]. The ratio of the number of ß-sheet α-synuclein aggregates to ß-sheet amyloid-ß aggregates in serum extracted using our super-resolution method discriminated Parkinson's disease cases from controls with an accuracy of 98.2% (AUC = 98.2%, P = 4.3 × 10-5). Our data suggest that studying the protein aggregates present in serum can provide information about the disruption of protein homeostasis occurring in Parkinson's disease and warrants further investigation as a potential biomarker of disease.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Péptidos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo
10.
ACS Macro Lett ; 8(10): 1316-1322, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35651172

RESUMEN

Electrochemical activation of thiocarbonylthio reversible addition-fragmentation chain transfer (RAFT) agents (S=C(Z)S-R) is explored as a potential method for initiating RAFT polymerization under mild conditions without producing initiator-derived byproducts. Herein we apply cyclic voltammetry to establish a predominant reduction mechanism, where electrochemical reduction is coupled to an irreversible first-order chemical reaction. Structure-dependent trends in cyclic voltammograms (CVs), and comparison to absorption spectra, clarify the role of R- and Z-groups in determining reduction processes. The major reduction peak moves to more cathodic potentials in the series dithiobenzoates > trithiocarbonates > heteroaromatic dithiocarbamates > xanthates ∼ N-alkyl-N-aryldithiocarbamates, due to the Z-group influence on thiocarbonyl bond reactivity. More active (electron-withdrawing, radical stabilizing) R-groups shift the reduction peak anodically, in part due to their influence on the rate of the coupled chemical reaction. Analysis of CVs across a range of scan rates revealed that kinetic control over the reduction mechanism is influenced by both the charge transfer rate and chemical reaction rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA