Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 11: 1399827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883861

RESUMEN

The escalating global population is anticipated to intensify the demand for high-quality proteins, necessitating the exploration of alternative protein sources. Edible insects are a promising solution, owing to their nutritional richness and sustainability. However, their digestibility and protein quality, particularly after culinary treatment, remains underexplored. In the present study, we investigated the effects of various culinary treatments on the protein digestibility of two insect species, Tenebrio molitor and Gryllus assimilis. Our findings revealed that culinary treatments such as boiling, roasting, drying, and microwave heating significantly influenced the digestibility of both insect species. Notably, drying emerged as the most effective method, leading to a substantial increase in digestibility. Furthermore, we assessed protein quality using the digestible indispensable amino acid score (DIAAS) and found that the choice of the calculation method significantly influenced the evaluation of protein quality. By including the sum of the anhydrous amino acids, we eliminated the potential overestimation of protein content and obtained a more reliable assessment of protein quality. Our results underscore the importance of culinary treatments and calculation methods in determining the suitability of insects as protein sources for human nutrition.

2.
World J Microbiol Biotechnol ; 40(5): 145, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532224

RESUMEN

In this study, we tested the ability of lactobacilli and bifidobacteria strains to accumulate and biotransform sodium selenite into various selenium species, including selenium nanoparticles (SeNPs). Selenium tolerance and cytotoxicity of selenized strains towards human adenocarcinoma Caco-2 and HT29 cells were determined for all tested strains. Furthermore, the influence of selenium enrichment on the antioxidant activity of selenized strains and hydrophobicity of the bacterial cell surfaces were evaluated. Both hydrophobicity and antioxidant activity increased significantly in the selenized L. paracasei strain and decreased significantly in the selenized L. helveticus strain. The concentrations of 5 and 10 mg/L Na2SeO3 in the growth media were safer for Caco-2 and HT29 cell growth than higher concentrations. At higher concentrations (30, 50, and 100 mg/L), the cell viability was reduced. All the tested strains showed differences in antioxidant potential and hydrophobicity after selenium enrichment. In addition to selenocystine ​​and selenomethionine, the tested bacterial strains produced significant amounts of SeNPs. Our results show that the tested bacterial strains can accumulate and biotransform inorganic selenium, which allows them to become a potential source of selenium.


Asunto(s)
Selenio , Humanos , Selenio/metabolismo , Antioxidantes , Lactobacillus/metabolismo , Células CACO-2 , Suplementos Dietéticos
3.
J Trace Elem Med Biol ; 83: 127402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38310829

RESUMEN

BACKGROUND AND OBJECTIVE: Yeasts have the remarkable capability to transform and integrate inorganic selenium into their cellular structures, thereby enhancing its bioavailability and reducing its toxicity. In recent years, yeasts have attracted attention as potential alternative sources of protein. METHODS: This study explores the selenium accumulation potential of two less explored yeast strains, namely the probiotic Saccharomyces boulardii CCDM 2020 and Pichia fermentas CCDM 2012, in comparison to the extensively studied Saccharomyces cerevisiae CCDM 272. Our investigation encompassed diverse stress conditions. Subsequently, the selenized yeasts were subjected to an INFOGEST gastrointestinal model. The adherence and hydrophobicity were determined with undigested cells RESULTS: Stress conditions had an important role in influencing the quantity and size of selenium nanoparticles (SeNPs) generated by the tested yeasts. Remarkably, SeMet synthesis was limited to Pichia fermentas CCDM 2012 and S. boulardii CCDM 2020, with S. cerevisiae CCDM 272 not displaying SeMet production at all. Throughout the simulated gastrointestinal digestion, the most substantial release of SeCys2, SeMet, and SeNPs from the selenized yeasts occurred during the intestinal phase. Notably, exception was found in strain CCDM 272, where the majority of particles were released during the oral phase. CONCLUSION: The utilization of both traditional and non-traditional selenized yeast types, harnessed for their noted functional attributes, holds potential for expanding the range of products available while enhancing their nutritional value and health benefits.


Asunto(s)
Probióticos , Saccharomyces boulardii , Selenio , Saccharomyces cerevisiae/química , Saccharomyces boulardii/metabolismo , Pichia , Selenio/metabolismo , Probióticos/metabolismo , Digestión
4.
Artículo en Inglés | MEDLINE | ID: mdl-36459627

RESUMEN

Introduction: The use of Cannabis sativa L. in health care requires stringent care for the optimal production of the bioactive compounds. However, plant phenotypes and the content of secondary metabolites, such as phytocannabinoids, are strongly influenced by external factors, such as nutrient availability. It has been shown that phytocannabinoids can exhibit selective cytotoxicity against various cancer cell lines while protecting healthy tissue from apoptosis. Research Aim: This study aimed to clarify the cytotoxic effect of cannabis extracts on colorectal cell lines by identifying the main active compounds and determining their abundance and activity across all developmental stages of medical cannabis plants cultivated under hydroponic conditions. Materials and Methods: Dimethyl sulfoxide extracts of medical cannabis plants bearing the genotype classified as chemotype I were analyzed by high-performance liquid chromatography, and their cytotoxic activity was determined by measuring cell viability by methylthiazolyldiphenyl-tetrazolium bromide assay on the human colon cancer cell lines, Caco-2 and HT-29, and the normal human epithelial cell line, CCD 841 CoN. Results: The most abundant phytocannabinoid in cannabis extracts was tetrahydrocannabinolic acid (THCA). Its maximum concentrations were reached from the 7th to the 13th plant vegetation week, depending on the nutritional cycle and treatment. Almost all extracts were cytotoxic to the human colorectal cancer (CRC) cell line HT-29 at lower concentrations than the other cell lines. The phytocannabinoids that most affected the cytotoxicity of individual extracts on HT-29 were cannabigerol, Δ9-tetrahydrocannabinol, cannabidiol, cannabigerolic acid, and THCA. The tested model showed almost 70% influence of these cannabinoids. However, THCA alone influenced the cytotoxicity of individual extracts by nearly 65%. Conclusions: Phytocannabinoid extracts from plants of the THCA-dominant chemotype interacted synergistically and showed selective cytotoxicity against the CRC cell line, HT-29. This positive extract response indicates possible therapeutic value.

5.
Front Immunol ; 13: 957518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238306

RESUMEN

The highly infectious coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a new coronavirus that has been spreading since late 2019 and has caused millions of deaths worldwide. COVID-19 continues to spread rapidly worldwide despite high vaccination coverage; therefore, it is crucial to focus on prevention. Most patients experience only mild symptoms of COVID-19. However, in some cases, serious complications can develop mainly due to an exaggerated immune response; that is, a so-called cytokine storm, which can lead to acute respiratory distress syndrome, organ failure, or, in the worst cases, death. N-3 polyunsaturated fatty acids and their metabolites can modulate inflammatory responses, thus reducing the over-release of cytokines. It has been hypothesized that supplementation of n-3 polyunsaturated fatty acids could improve clinical outcomes in critically ill COVID-19 patients. Some clinical trials have shown that administering n-3 polyunsaturated fatty acids to critically ill patients can improve their health and shorten the duration of their stay in intensive care. However, previous clinical studies have some limitations; therefore, further studies are required to confirm these findings.


Asunto(s)
COVID-19 , Ácidos Grasos Omega-3 , Enfermedad Crítica , Citocinas , Ácidos Grasos Omega-3/uso terapéutico , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA