RESUMEN
Apart from serving as a Th1 lineage commitment regulator, transcription factor T-bet is also expressed in other immune cell types and thus orchestrates their functions. In case of B cells, more specifically, T-bet is responsible for their isotype switching to specific IgG sub-classes (IgG2a/c in mice and IgG1/3 in humans). In various autoimmune disorders, such as systemic lupus erythematosus and/or rheumatoid arthritis, subsets of T-bet expressing B cells, known as age-associated B cells (CD19+CD11c+CD21-T-bet+) and/or double-negative B cells (CD19+IgD-CD27-T-bet+), display an expansion and seem to drive disease pathogenesis. According to data, mostly derived from mice models of autoimmunity, the targeting of these specific B-cell populations is capable of ameliorating the general health status of the autoimmune subjects. Here, in this review article, we present a variety of therapeutic approaches for both mice and humans, suffering from an autoimmune disease, and we discuss the effects of each approach on T-bet+ B cells. In general, we highlight the importance of specifically targeting T-bet+ B cells for therapeutic interventions in autoimmunity.
Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Linfocitos B , Proteínas de Dominio T Box , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/inmunología , Proteínas de Dominio T Box/genética , Humanos , Animales , Autoinmunidad/inmunología , Linfocitos B/inmunología , Ratones , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/terapia , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: Lung cancer is associated with a high incidence of mortality worldwide. Molecular mechanisms governing the disease have been explored by genomic studies; however, several aspects remain elusive. The integration of genomic profiling with in-depth proteomic profiling has introduced a new dimension to lung cancer research, termed proteogenomics. The aim of this review article was to investigate proteogenomic approaches in lung cancer, focusing on how elucidation of proteogenomic features can evoke tangible clinical outcomes. METHODS: A strict methodological approach was adopted for study selection and key article features included molecular attributes, tumor biomarkers, and major hallmarks involved in oncogenesis. RESULTS: As a consensus, in all studies it becomes evident that proteogenomics is anticipated to fill significant knowledge gaps and assist in the discovery of novel treatment options. Genomic profiling unravels patient driver mutations, and exploration of downstream effects uncovers great variability in transcript and protein correlation. Also, emphasis is placed on defining proteogenomic traits of tumors of major histological classes, generating a diverse portrait of predictive markers and druggable targets. CONCLUSIONS: An up-to-date synthesis of landmark lung cancer proteogenomic studies is herein provided, underpinning the importance of proteogenomics in the landscape of personalized medicine for combating lung cancer.
RESUMEN
BACKGROUND: Primary dysmenorrhea is considered to be one of the most common gynecological complaints, affecting women's daily activities and social life. The severity of dysmenorrhea varies among women, and its management is of high importance for them. Given that non-steroidal anti-inflammatory drugs (NSAIDs), the established treatment for dysmenorrhea, are associated with many adverse events, alternative therapeutic options are under evaluation. Emerging evidence correlates management of dysmenorrhea with micronutrients, especially vitamins. PURPOSE: The aim of this narrative review is to highlight and provide evidence of the potential benefits of vitamins for the management of dysmenorrhea. METHODS: The articles were searched on PubMed, Scopus and Google Scholar. The searching process was based on keywords, such as "primary dysmenorrhea", "vitamins", "supplementation", "vitamin D", "vitamin E" and others. Our search focused on data derived from clinical trials, published only during the last decade (older articles were excluded). RESULTS: In this review, 13 clinical trials were investigated. Most of them supported the anti-inflammatory, antioxidant and analgesic properties of vitamins. Particularly, vitamins D and E revealed a desirable effect on dysmenorrhea relief Conclusion: Despite the scarcity and heterogeneity of related research, the studies indicate a role of vitamins for the management of primary dysmenorrhea, proposing that they should be considered as alternative therapeutic candidates for clinical use. Nevertheless, this correlation warrants further research.
RESUMEN
BACKGROUND AND OBJECTIVES: Pharmacological treatments available for substance use disorder (SUD) focus on pharmacodynamics, agonizing or antagonizing the drug of abuse (DOA) on receptor level. Drawbacks of this approach include the reliance on long-term patient compliance, on-target off-site effects, perpetuation of addiction and unavailability for many DOAs. Newer, pharmacokinetic approaches are needed that restrict DOA's access to the brain or disrupt DOA-instated brain changes maintaining addiction. Biotechnology might be able to provide the right biopharmaceutical tools to deliver a fine-tuned solution with less side effects compared to currently available treatments. METHODS: This review examines the available literature on biopharmaceuticals developed to treat SUD. RESULTS: Active and passive immunization, metabolic enhancers that augment DOA metabolism and clearance, as well as genetic/epigenetic modulation are promising next generation SUD treatments. Active immunization relies on production of antidrug antibodies by means of vaccination, while passive immunization constitutes of exogenous administration of such antibodies. Metabolic enhancers include drug-specific metabolizing enzymes that can be administered or secreted by modified skin grafts, as well as catalytic antibodies that hasten DOA metabolism. Nanotechnological advances can also allow for brain delivery of siRNAs, mRNAs or DNA in order to modulate central, common in all addictions, genetic or epigenetic targets attenuating drug seeking behavior and reversing drug-induced brain changes. CONCLUSIONS: and Scientific Significance: Biopharmaceuticals can in the future complement or even replace traditional pharmacodynamics approaches in SUD treatment. While passive and active immunization biopharmaceuticals have entered human clinical trials, metabolic enhancers and genetic approaches are at the preclinical level.
Asunto(s)
Conducta Adictiva , Productos Biológicos , Drogas Ilícitas , Trastornos Relacionados con Sustancias , Humanos , Productos Biológicos/uso terapéutico , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Anticuerpos/uso terapéutico , Inmunización PasivaRESUMEN
Protein replacement therapy is an umbrella term used for medical treatments that aim to substitute or replenish specific protein deficiencies that result either from the protein being absent or non-functional due to mutations in affected patients. Traditionally, such an approach requires a well characterized but arduous and expensive protein production procedure that employs in vitro expression and translation of the pharmaceutical protein in host cells, followed by extensive purification steps. In the wake of the SARS-CoV-2 pandemic, mRNA-based pharmaceuticals were recruited to achieve rapid in vivo production of antigens, proving that the in vivo translation of exogenously administered mRNA is nowadays a viable therapeutic option. In addition, the urgency of the situation and worldwide demand for mRNA-based medicine has led to an evolution in relevant technologies, such as in vitro transcription and nanolipid carriers. In this review, we present preclinical and clinical applications of mRNA as a tool for protein replacement therapy, alongside with information pertaining to the manufacture of modified mRNA through in vitro transcription, carriers employed for its intracellular delivery and critical quality attributes pertaining to the finished product.
RESUMEN
COVID-19 is an infectious disease caused by a single-stranded RNA (ssRNA) virus, known as SARS-CoV-2. The disease, since its first outbreak in Wuhan, China, in December 2019, has led to a global pandemic. The pharmaceutical industry has developed several vaccines, of different vector technologies, against the virus. Of note, among these vaccines, seven have been fully approved by WHO. However, despite the benefits of COVID-19 vaccination, some rare adverse effects have been reported and have been associated with the use of the vaccines developed against SARS-CoV-2, especially those based on mRNA and non-replicating viral vector technology. Rare adverse events reported include allergic and anaphylactic reactions, thrombosis and thrombocytopenia, myocarditis, Bell's palsy, transient myelitis, Guillen-Barre syndrome, recurrences of herpes-zoster, autoimmunity flares, epilepsy, and tachycardia. In this review, we discuss the potential molecular mechanisms leading to these rare adverse events of interest and we also attempt an association with the various vaccine components and platforms. A better understanding of the underlying mechanisms, according to which the vaccines cause side effects, in conjunction with the identification of the vaccine components and/or platforms that are responsible for these reactions, in terms of pharmacovigilance, could probably enable the improvement of future vaccines against COVID-19 and/or even other pathological conditions.