RESUMEN
Soluble CD163 (sCD163) is a circulating inflammatory mediator, indicative of acute and chronic, systemic and non-systemic inflammatory conditions. It is the cleavage outcome, consisting of almost the entire extracellular domain, of the CD163, a receptor expressed in monocytic lineages. Its expression is proportional to the abundance of CD163+ macrophages. Various mechanisms trigger the shedding of the CD163 receptor or the accumulation of CD163-expressing macrophages, inducing the sCD163 concentration in the circulation and bodily fluids. The activities of sCD163 range from hemoglobin (Hb) scavenging, macrophage marker, decoy receptor for cytokines, participation in immune defense mechanisms, and paracrine effects in various tissues, including the endothelium. It is an established marker of macrophage activation and thus participates in many diseases, including chronic inflammatory conditions, such as atherosclerosis, asthma, and rheumatoid arthritis; acute inflammatory conditions, such as sepsis, hepatitis, and malaria; insulin resistance; diabetes; and tumors. The sCD163 levels have been correlated with the severity, stage of the disease, and clinical outcome for many of these conditions. This review article summarizes the expression and role of sCD163 and its precursor protein, CD163, outlines the sCD163 generation mechanisms, the biological activities, and the known underlying molecular mechanisms, with an emphasis on its impact on the endothelium and its contribution in the pathophysiology of human diseases.
Asunto(s)
Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Receptores de Superficie Celular , Humanos , Receptores de Superficie Celular/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/sangre , Antígenos CD/metabolismo , Antígenos CD/sangre , Inflamación/metabolismo , Inflamación/sangre , Macrófagos/metabolismo , Solubilidad , Biomarcadores/metabolismo , Biomarcadores/sangre , AnimalesRESUMEN
The endothelial barrier plays an active role in transendothelial tumor cell migration during metastasis, however, the endothelial regulatory elements of this step remain obscure. Here we show that endothelial RhoA activation is a determining factor during this process. Breast tumor cell-induced endothelial RhoA activation is the combined outcome of paracrine IL-8-dependent and cell-to-cell contact ß 1 integrin-mediated mechanisms, with elements of this pathway correlating with clinical data. Endothelial-specific RhoA blockade or in vivo deficiency inhibited the transendothelial migration and metastatic potential of human breast tumor and three murine syngeneic tumor cell lines, similar to the pharmacological blockade of the downstream RhoA pathway. These findings highlight endothelial RhoA as a potent, universal target in the tumor microenvironment for anti-metastatic treatment of solid tumors.
RESUMEN
The lymphatic system participates in the regulation of immune surveillance, lipid absorption, and tissue fluid balance. The isolation of murine lymphatic endothelial cells is an important process for lymphatic research, as it allows the performance of in vitro and biochemical experiments on the isolated cells. Moreover, the development of Cre-lox technology has enabled the tissue-specific deficiency of genes that cannot be globally targeted, leading to the precise determination of their role in the studied tissues. The dissection of the role of certain genes in lymphatic physiology and pathophysiology requires the use of lymphatic-specific promoters, and thus, the experimental verification of the expression levels of the targeted genes. Methods for efficient isolation of lymphatic endothelial cells from wild-type or transgenic mice enable the use of ex vivo and in vitro assays to study the mechanisms regulating the lymphatic functions and the identification of the expression levels of the studied proteins. We have developed, standardized and present a protocol for the efficient isolation of murine dermal lymphatic endothelial cells (DLECs) via magnetic bead purification based on LYVE-1 expression. The protocol outlined aims to equip researchers with a tool to further understand and elucidate important players of lymphatic endothelial cell functions, especially in facilities where fluorescence-activated cell sorting equipment is not available.
Asunto(s)
Células Endoteliales , Vasos Linfáticos , Ratones , Animales , Ratones Transgénicos , Disección , Líquido ExtracelularRESUMEN
The characteristics of the primary tumor blood vessels and the tumor microenvironment drive the enhanced permeability and retention (EPR) effect, which confers an advantage towards enhanced delivery of anti-cancer nanomedicine and has shown beneficial effects in preclinical models. Increased vascular permeability is a landmark feature of the tumor vessels and an important driver of the EPR. The main focus of this review is the endothelial regulation of vascular permeability. We discuss current challenges of targeting vascular permeability towards clinical translation and summarize the structural components and mechanisms of endothelial permeability, the principal mediators and signaling players, the targeted approaches that have been used and their outcomes to date. We also critically discuss the effects of the tumor-infiltrating immune cells, their interplay with the tumor vessels and the impact of immune responses on nanomedicine delivery, the impact of anti-angiogenic and tumor-stroma targeting approaches, and desirable nanoparticle design approaches for greater translational benefit.
Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antineoplásicos/química , Sistemas de Liberación de Medicamentos , Neoplasias/patología , Nanopartículas/química , Permeabilidad , Nanomedicina , Microambiente TumoralRESUMEN
Existing vascular endothelial growth factor-oriented antiangiogenic approaches are known for their high potency. However, significant side effects associated with their use drive the need for novel antiangiogenic strategies. The small GTPase RhoA is an established regulator of actin cytoskeletal dynamics. Previous studies have highlighted the impact of endothelial RhoA pathway on angiogenesis. Rho-associate kinase (ROCK), a direct RhoA effector, is potently inhibited by Fasudil, a clinically relevant ROCK inhibitor. Here, we aimed to target the RhoA signaling in endothelial cells by generating Fasudil-encapsulated CD31-targeting liposomes as a potential antiangiogenic therapy. The liposomes presented desirable characteristics, preferential binding to CD31-expressing HEK293T cells and to endothelial cells, inhibited stress fiber formation and cytoskeletal-related morphometric parameters, and inhibited in vitro angiogenic functions. Overall, this work shows that the nanodelivery-mediated endothelial targeting of RhoA signaling can offer a promising strategy for angiogenesis inhibition in vascular-related diseases. SIGNIFICANCE STATEMENT: Systemic administration of antiangiogenic therapeutics induces side effects to non-targeted tissues. This study, among others, has shown the impact of the RhoA signaling in the endothelial cells and their angiogenic functions. Here, to minimize potential toxicity, this study generated CD31-targeting liposomes with encapsulated Fasudil, a clinically relevant Rho kinase inhibitor, and successfully targeted endothelial cells. In this proof-of-principle study, the efficient Fasudil delivery, its impact on the endothelial signaling, morphometric alterations, and angiogenic functions verify the benefits of site-targeted antiangiogenic therapy.
Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Humanos , Células Endoteliales/metabolismo , Células HEK293 , Liposomas , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Pleiotrophin (PTN) is a growth factor that appears to play an important role in prostate cancer growth and angiogenesis. We have previously shown that decreased PTN expression in human prostate cancer PC3 cells leads to decreased adhesion of prostate cancer cells to osteoblasts, suggesting that PTN mediates this interaction. In the current work, using peptides that correspond to different regions of the PTN protein, we identified that a domain responsible for the adhesion of prostate cancer cells to osteoblasts corresponds to amino acids 16-24 of the mature PTN protein. Given that a synthetic PTN16-24 peptide which disturbs the interaction of PTN with nucleolin (NCL) was found to inhibit prostate cancer cells' adhesion to osteoblasts, it seems that NCL mediates the cellular interactions involved in the adhesion process. Two pseudopeptides that bind to cell surface NCL and an anti-NCL antibody also decrease prostate cancer cell adhesion to osteoblasts to the same degree as PTN16-24, further supporting the involvement of cell surface NCL in this interaction. Collectively, our data suggest that NCL on the cell surface of osteoblasts may mediate adhesion of prostate cancer cells through PTN and identify peptides that could be exploited therapeutically to target this component of prostate cancer bone metastases.
Asunto(s)
Citocinas , Neoplasias de la Próstata , Proteínas Portadoras , Adhesión Celular , Citocinas/metabolismo , Humanos , Masculino , Osteoblastos/metabolismo , Fosfoproteínas , Neoplasias de la Próstata/patología , Proteínas de Unión al ARN , NucleolinaRESUMEN
The secreted growth factor pleiotrophin (PTN) is expressed in all species and is evolutionarily highly conserved, suggesting that it plays a significant role in the regulation of important processes. The observation that it is highly expressed at early stages during development and in embryonic progenitor cells highlights a potentially important contribution to development. There is ample evidence of the role of PTN in the development of the nervous system and hematopoiesis, some, albeit inconclusive, evidence of its role in the skeletomuscular system, and limited evidence of its role in the development of other organs. Studies on its role in the cardiovascular system and angiogenesis suggest that PTN has a significant regulatory effect by acting on endothelial cells, while its role in the functions of smooth or cardiac muscle cells has not been studied. This review highlights what is known to date regarding the role of PTN in the development of various organs and in angiogenesis. Wherever possible, evidence on the crosstalk between the receptors that mediate PTN's functions is also quoted, highlighting the complex regulatory pathways that affect development and angiogenesis.
Asunto(s)
Proteínas Portadoras , Células Endoteliales , Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Humanos , Neovascularización PatológicaRESUMEN
Pleiotrophin (PTN) has a moderate stimulatory effect on endothelial cell migration through ανß3 integrin, while it decreases the stimulatory effect of vascular endothelial growth factor A (VEGFA) and inhibits cell migration in the absence of ανß3 through unknown mechanism(s). In the present work, by using a multitude of experimental approaches, we show that PTN binds to VEGF receptor type 2 (VEGFR2) with a KD of 11.6 nM. Molecular dynamics approach suggests that PTN binds to the same VEGFR2 region with VEGFA through its N-terminal domain. PTN inhibits phosphorylation of VEGFR2 at Tyr1175 and still stimulates endothelial cell migration in the presence of a selective VEGFR2 tyrosine kinase inhibitor. VEGFR2 downregulation by siRNA or an anti-VEGFR2 antibody that binds to the ligand-binding VEGFR2 domain also induce endothelial cell migration, which is abolished by a function-blocking antibody against ανß3 or the peptide PTN112-136 that binds ανß3 and inhibits PTN binding. In cells that do not express ανß3, PTN decreases both VEGFR2 Tyr1175 phosphorylation and cell migration in a VEGFR2-dependent manner. Collectively, our data identify VEGFR2 as a novel PTN receptor involved in the regulation of cell migration by PTN and contribute to the elucidation of the mechanism of activation of endothelial cell migration through the interplay between VEGFR2 and ανß3.
Asunto(s)
Proteínas Portadoras/metabolismo , Movimiento Celular , Citocinas/metabolismo , Integrina alfaVbeta3/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Proteínas Portadoras/química , Línea Celular Tumoral , Citocinas/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Modelos Biológicos , Simulación de Dinámica Molecular , Neovascularización Fisiológica , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Dominios Proteicos , Ratas , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Pleiotrophin (PTN) stimulates endothelial cell migration through binding to receptor protein tyrosine phosphatase beta/zeta (RPTPß/ζ) and ανß3 integrin. Screening for proteins that interact with RPTPß/ζ and potentially regulate PTN signaling, through mass spectrometry analysis, identified cyclin-dependent kinase 5 (CDK5) activator p35 among the proteins displaying high sequence coverage. Interaction of p35 with the serine/threonine kinase CDK5 leads to CDK5 activation, known to be implicated in cell migration. Protein immunoprecipitation and proximity ligation assays verified p35-RPTPß/ζ interaction and revealed the molecular association of CDK5 and RPTPß/ζ. In endothelial cells, PTN activates CDK5 in an RPTPß/ζ- and phosphoinositide 3-kinase (PI3K)-dependent manner. On the other hand, c-Src, ανß3 and ERK1/2 do not mediate the PTN-induced CDK5 activation. Pharmacological and genetic inhibition of CDK5 abolished PTN-induced endothelial cell migration, suggesting that CDK5 mediates PTN stimulatory effect. A new pyrrolo[2,3-α]carbazole derivative previously identified as a CDK1 inhibitor, was found to suppress CDK5 activity and eliminate PTN stimulatory effect on cell migration, warranting its further evaluation as a new CDK5 inhibitor. Collectively, our data reveal that CDK5 is activated by PTN, in an RPTPß/ζ-dependent manner, regulates PTN-induced cell migration and is an attractive target for the inhibition of PTN pro-angiogenic properties.
Asunto(s)
Proteínas Portadoras/farmacología , Movimiento Celular/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/genética , Citocinas/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Carbazoles/farmacología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Guanina/análogos & derivados , Guanina/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Roscovitina/farmacología , Transducción de SeñalRESUMEN
The natural product artemisinin and derivatives thereof are currently considered as the drugs of choice for the treatment of malaria. At the same time, a significant number of such drugs have also shown interesting anticancer activity. In the context of the present research work, artemisinin was structurally modified and anchored to naturally occurring polyamines to afford new artemisinin dimeric conjugates whose potential anticancer activity was evaluated. All artemisinin conjugates tested were more effective than artemisinin itself in decreasing the number of MCF7 breast cancer cells. The effect required conjugation and was not due to the artemisinin analogue or the polyamine, alone or in combination. To elucidate potential mechanism of action, we used the most effective conjugates 6, 7, 9 and 12 and found that they decreased expression and secretion of the angiogenic growth factor pleiotrophin by the cancer cells themselves, and inhibited angiogenesis in vivo and endothelial cell growth in vitro. These data suggest that the new artemisinin dimers are good candidates for the development of effective anticancer agents.
Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Artemisininas/química , Artemisininas/farmacología , Poliaminas/química , Inhibidores de la Angiogénesis/síntesis química , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Artemisininas/síntesis química , Embrión de Pollo , Pollos , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Dimerización , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células MCF-7 , Neovascularización Fisiológica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Colloidal clusters of magnetic iron oxide nanocrystals (MIONs), particularly in the condensed pattern (co-CNCs), have emerged as new superstructures to improve further the performance of MIONs in applications pertaining to magnetic manipulation (drug delivery) and magnetic resonance imaging (MRI). Exploitation of the advantages they represent and their establishment in the area of nanomedicine demands a particular set of assets. The present work describes the development and evaluation of MION-based co-CNCs featuring for the first time such assets: High magnetization, as well as magnetic content and moment, high relaxivities (r2 = 400 and r2* = 905 s(-1) mMFe(-1)) and intrinsic loss power (2.3 nH m(2) kgFe(-1)) are combined with unprecedented colloidal stability and structural integrity, stealth and drug-loading properties. The reported nanoconstructs are endowed with additional important features such as cost-effective synthesis and storage, prolonged self-life and biocompatibility. It is finally showcased with in vivo multispectral optoacoustic tomography how these properties culminate in a system suitable for targeting breast cancer and for forceful in vivo manipulation with low magnetic field gradients.
Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Mama/patología , Compuestos Férricos/química , Imanes/química , Nanopartículas/química , Técnicas Fotoacústicas/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Neoplasias de la Mama/patología , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Femenino , Compuestos Férricos/farmacocinética , Ratones , Ratones Desnudos , Nanopartículas/análisis , Polietilenglicoles/química , Polietilenglicoles/farmacocinéticaRESUMEN
Mechanical loading of the spine is a major causative factor of degenerative changes and causes molecular and structural changes in the intervertebral disc (IVD) and the vertebrae end plate (EP). Pleiotrophin (PTN) is a growth factor with a putative role in bone remodeling through its receptor protein tyrosine phosphatase beta/zeta (RPTPß/ζ). The present study investigates the effects of strain on PTN and RPTPß/ζ protein expression in vivo. Tails of eight weeks old Sprague-Dawley rats were subjected to mechanical loading using a mini Ilizarov external apparatus. Rat tails untreated (control) or after 0 degrees of compression and 10°, 30° and 50° of angulation (groups 0, I, II and III respectively) were studied. PTN and RPTPß/ζ expression were evaluated using immunohistochemistry and Western blot analysis. In the control group, PTN was mostly expressed by the EP hypertrophic chondrocytes. In groups 0 to II, PTN expression was increased in the chondrocytes of hypertrophic and proliferating zones, as well as in osteocytes and osteoblast-like cells of the ossification zone. In group III, only limited PTN expression was observed in osteocytes. RPTPß/ζ expression was increased mainly in group 0, but also in group I, in all types of cells. Low intensity RPTPß/ζ immunostaining was observed in groups II and III. Collectively, PTN and RPTPß/ζ are expressed in spinal deformities caused by mechanical loading, and their expression depends on the type and severity of the applied strain.
Asunto(s)
Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Disco Intervertebral/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Columna Vertebral/anomalías , Columna Vertebral/metabolismo , Estrés Mecánico , Animales , Apoptosis , Fenómenos Biomecánicos , Diferenciación Celular , Condrocitos/metabolismo , Fijadores Externos , Necrosis , Osteoblastos/metabolismo , Osteocitos/metabolismo , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal , Columna Vertebral/citologíaRESUMEN
Pleiotrophin (PTN) is a heparin-binding growth factor that induces cell migration through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTPß/ζ) and integrin alpha v beta 3 (ανß3). In the present work, we studied the effect of PTN on the generation of reactive oxygen species (ROS) in human endothelial cells and the involvement of ROS in PTN-induced cell migration. Exogenous PTN significantly increased ROS levels in a concentration and time-dependent manner in both human endothelial and prostate cancer cells, while knockdown of endogenous PTN expression in prostate cancer cells significantly down-regulated ROS production. Suppression of RPTPß/ζ through genetic and pharmacological approaches, or inhibition of c-src kinase activity abolished PTN-induced ROS generation. A synthetic peptide that blocks PTN-ανß3 interaction abolished PTN-induced ROS generation, suggesting that ανß3 is also involved. The latter was confirmed in CHO cells that do not express ß3 or over-express wild-type ß3 or mutant ß3Y773F/Y785F. PTN increased ROS generation in cells expressing wild-type ß3 but not in cells not expressing or expressing mutant ß3. Phosphoinositide 3-kinase (PI3K) or Erk1/2 inhibition suppressed PTN-induced ROS production, suggesting that ROS production lays down-stream of PI3K or Erk1/2 activation by PTN. Finally, ROS scavenging and xanthine oxidase inhibition completely abolished both PTN-induced ROS generation and cell migration, while NADPH oxidase inhibition had no effect. Collectively, these data suggest that xanthine oxidase-mediated ROS production is required for PTN-induced cell migration through the cell membrane functional complex of ανß3 and RPTPß/ζ and activation of c-src, PI3K and ERK1/2 kinases.
Asunto(s)
Proteínas Portadoras/farmacología , Citocinas/farmacología , Células Endoteliales/metabolismo , Xantina Oxidasa/metabolismo , Animales , Células CHO , Proteína Tirosina Quinasa CSK , Línea Celular Tumoral , Movimiento Celular , Cricetulus , Células Endoteliales/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/metabolismo , Integrina alfaVbeta3/metabolismo , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Próstata/metabolismo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Proteínas Recombinantes/metabolismo , Familia-src Quinasas/metabolismoRESUMEN
Bone has an enormous capacity for growth, regeneration, and remodelling, largely due to induction of osteoblasts that are recruited to the site of bone formation. Although the pathways involved have not been fully elucidated, it is well accepted that the immediate environment of the cells is likely to play a role via cellmatrix interactions, mediated by several growth factors. Formation of new blood vessels is also significant and interdependent to bone formation, suggesting that enhancement of angiogenesis could be beneficial during the process of bone repair. Pleiotrophin (PTN), also called osteoblast-specific factor 1, is a heparin-binding angiogenic growth factor, with a well-defined and significant role in both physiological and pathological angiogenesis. In this review we summarise the existing evidence on the role of PTN in bone repair.
Asunto(s)
Huesos/patología , Proteínas Portadoras/farmacología , Citocinas/farmacología , Fracturas Óseas/patología , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Animales , Huesos/efectos de los fármacos , Huesos/metabolismo , Proteínas Portadoras/uso terapéutico , Diferenciación Celular , Citocinas/uso terapéutico , Fracturas Óseas/tratamiento farmacológico , Regulación de la Expresión Génica , Humanos , Ratones , Neovascularización Patológica , Neovascularización Fisiológica , Osteoblastos/efectos de los fármacos , Ratas , Transducción de SeñalRESUMEN
Retinoids constitute a family of organic compounds that are being used for the treatment of various diseases, ranging from acne vulgaris to acute promyelocytic leukemia. Their use however is limited due to serious adverse effects and there is a great need for analogues with better safety profile. In the present work, the effect of N(1),N(12)-bis(all-trans-retinoyl)spermine (RASP), a conjugate of all-trans-retinoic acid (atRA) with spermine, on angiogenesis in vivo and viability of human endothelial and prostate cancer cells in vitro were studied. Both atRA and RASP dose-dependently inhibited angiogenesis in the chicken embryo chorioallantoic membrane model. RASP was more effective and could be used in a wider dose range due to lower toxicity compared with atRA. Both retinoids decreased the number of human umbilical vein endothelial and prostate cancer LNCaP and PC3 cells in a concentration-dependent manner. RASP was more effective and potent compared with atRA, spermine, their combination, or conjugates of spermine with other acidic retinoids and/or psoralens in prostate cancer cells. The inhibitory effect of both atRA and RASP seems to be related to an increase of the tumour repressing gene retinoic acid receptor beta mRNA, was mediated by retinoic acid receptor alpha, and was proportional to endogenous retinoic acid receptor beta expression. These data suggest that RASP is more effective than atRA in decreasing angiogenesis and prostate cancer cell growth and identify retinoic acid receptor alpha as the receptor through which it causes retinoic acid receptor beta up-regulation and decrease of prostate cancer cell growth.
Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Neoplasias de la Próstata/patología , Espermina/análogos & derivados , Tretinoina/análogos & derivados , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Recuento de Células , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Embrión de Pollo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Espermina/química , Espermina/farmacología , Tretinoina/química , Tretinoina/farmacologíaRESUMEN
Pleiotrophin (PTN) is a heparin-binding growth factor with diverse functions related to tumor growth, angiogenesis, and metastasis. Pleiotrophin seems to have a significant role in prostate cancer cell growth and to mediate the stimulatory actions of other factors that affect prostate cancer cell functions. However, all studies carried out up to date are in vitro, using different types of human prostate cancer cell lines. The aim of the present work was to study the role of endogenous PTN in human prostate cancer growth in vivo. For this purpose, human prostate cancer PC3 cells were stably transfected with a plasmid vector, bearing the antisense PTN sequence, in order to inhibit PTN expression (AS-PC3). Migration, apoptosis, and adhesion on osteoblastic cells were measured in vitro. In vivo, PC3 cells were s.c. injected into male NOD/SCID mice, and tumor growth, survival rates, angiogenesis, apoptosis, and the number of metastasis were estimated. Pleiotrophin depletion resulted in a decreased migration capability of AS-PC3 cells compared with the corresponding mock-transfected or the non-transfected PC3 cells, as well as increased apoptosis and decreased adhesiveness to osteoblastic cells in vitro. In prostate cancer NOD/SCID mouse xenografts, PTN depletion significantly suppressed tumor growth and angiogenesis and induced apoptosis of cancer cells. In addition, PTN depletion decreased the number of metastases, providing a survival benefit for the animals bearing AS-PC3 xenografts. Our data suggest that PTN is implicated in human prostate cancer growth in vivo and could be considered a potential target for the development of new therapeutic approaches for prostate cancer.
Asunto(s)
Proteínas Portadoras/metabolismo , Citocinas/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Animales , Apoptosis/fisiología , Western Blotting , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Técnica del Anticuerpo Fluorescente , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Transfección , Trasplante HeterólogoRESUMEN
Pleiotrophin (PTN) is a heparin-binding growth factor that plays a significant role in tumor growth and angiogenesis. We have previously shown that in order for PTN to induce migration of endothelial cells, binding to both α(ν) ß(3) integrin and its receptor protein tyrosine phosphatase beta/zeta (RPTPß/ζ) is required. In the present study we show that a synthetic peptide corresponding to the last 25 amino acids of the C-terminal region of PTN (PTN(112-136) ) inhibited angiogenesis in the in vivo chicken embryo chorioallantoic membrane (CAM) assay and PTN-induced migration and tube formation of human endothelial cells in vitro. PTN(112-136) inhibited binding of PTN to α(ν) ß(3) integrin, and as shown by surface plasmon resonance (SPR) measurements, specifically interacted with the specificity loop of the extracellular domain of ß(3) . Moreover, it abolished PTN-induced FAK Y397 phosphorylation, similarly to the effect of a neutralizing α(ν) ß(3) -selective antibody. PTN(112-136) did not affect binding of PTN to RPTPß/ζ in endothelial cells and induced ß(3) Y773 phosphorylation and ERK1/2 activation to a similar extent with PTN. This effect was inhibited by down-regulation of RPTPß/ζ by siRNA or by c-src inhibition, suggesting that PTN(112-136) may interact with RPTPß/ζ. NMR spectroscopy studies showed that PTN(112-136) was characterized by conformational flexibility and absence of any element of secondary structure at room temperature, although the biologically active peptide segment 123-132 may adopt a defined structure at lower temperature. Collectively, our data suggest that although PTN(112-136) induces some of the signaling pathways triggered by PTN, it inhibits PTN-induced angiogenic activities through inhibition of PTN binding to α(ν) ß(3) integrin.
Asunto(s)
Proteínas Portadoras/química , Citocinas/química , Neovascularización Fisiológica/efectos de los fármacos , Péptidos/farmacología , Animales , Western Blotting , Proteínas Portadoras/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoprecipitación , Integrina alfaVbeta3/metabolismo , Espectroscopía de Resonancia Magnética , Péptidos/síntesis química , Péptidos/química , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Interferencia de ARN , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismoRESUMEN
Pleiotrophin (PTN) is a heparin-binding growth factor with diverse biological activities, the most studied of these being those related to the nervous system, tumor growth and angiogenesis. Although interest in the involvement of PTN in tumor growth is increasing, many questions remain unanswered, particularly concerning the receptors and the signaling pathways involved. In this review, we briefly introduce PTN, and summarize data on its involvement in tumor growth and angiogenesis, and on what is known to date concerning the receptors and pathways involved.