Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622339

RESUMEN

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Asunto(s)
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenómica , Fitomejoramiento
2.
Proc Natl Acad Sci U S A ; 119(24): e2200016119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35666863

RESUMEN

The polar bear (Ursus maritimus) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears (Ursus arctos). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear's lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations.


Asunto(s)
Evolución Biológica , Hibridación Genética , Ursidae , Animales , Flujo Génico , Genoma/genética , Filogenia , Ursidae/genética
3.
Chin Med ; 17(1): 49, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443733

RESUMEN

BACKGROUND: We aim to study the clinical effect of moxibustion at Laogong interval with Panax notoginseng on the short-term maturation and long-term patency of arteriovenous fistula. METHODS: Seventy-four pre-dialysis uremic patients who received distal forearm radial-cephalic fistula creations were enrolled in this study and randomly assigned to the control group and experimental group. After arteriovenous fistula creations, the control group underwent handgrip exercise, and the experimental group received moxibustion at Laogong acupoint interval with Panax notoginseng. Both groups received a 12-week treatment and were followed up for 24 weeks in all at the following time points: before creations and 2, 4, 8, 12, 24 weeks after creations. The diameter of anastomosis, the diameter and outflow of draining-veins 5 cm above anastomosis, the diameter and outflow of brachial arteries evaluated the maturation and patency of arteriovenous fistula. Enzyme linked immunosorbent assay determined serum levels of endothelin and nitric oxide. RESULTS: The maturity rate in the experimental group was significantly higher than that in the control group at 4 weeks after arteriovenous fistula creations (P = 0.048). The diameter of anastomosis, the diameter of draining veins, and the blood flow of draining veins increased in both groups during the whole 24 weeks. The diameter and blood flow of brachial arteries ascended in both groups during the previous 12 weeks. Compared with the control group, moxibustion at Laogong interval with Panax notoginseng significantly improved the value of the diameter of draining-veins (P = 0.016), the blood flow of draining-veins (P = 0.015), the diameter of brachial arteries (P < 0.001), and the blood flow of brachial arteries (P = 0. 012) at 2 weeks, and enhanced the blood flow of draining-veins (P = 0.029) and brachial arteries (P < 0.001) at 12 weeks. Serum levels of endothelin were significantly lower (P = 0.047), and serum levels of nitric oxide were markedly higher (P < 0.001) in the experimental group than that in the control group at 2 weeks after creations. CONCLUSIONS: Moxibustion at Laogong interval with Panax notoginseng was non-invasive and promoted the maturation of arteriovenous fistula at 4 weeks after creations. However, its long-term beneficial effect on patency at 24 weeks after creations was not significant. Trial registration Chinese Clinical Trial Registry, No. ChiCTR1900024042. Registered, http://www.chictr.org.cn/index.aspx.

4.
Nat Genet ; 54(1): 73-83, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980919

RESUMEN

Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar 'Feizixiao' was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair of CONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops.


Asunto(s)
Domesticación , Genoma de Planta , Litchi/genética , China , Productos Agrícolas/genética , Evolución Molecular , Flores/genética , Haplotipos , Heterocigoto , Litchi/crecimiento & desarrollo , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Especificidad de la Especie
5.
Front Nutr ; 9: 1064507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687723

RESUMEN

Renal ischemia-reperfusion (I/R) injury may lead to acute kidney injury, which is characterized by high morbidity and mortality rates. Resveratrol (RSV) can be extracted from Chinese herbs, and multiple animal experiments have demonstrated its potential for renal protection. This systematic review evaluates the protective effect of RSV against renal I/R injury in animal models. The PubMed, Embase, Web of Science, and Science Direct databases were searched for animal experiments related to RSV in renal I/R injury from their establishment to June 2022. In total, 19 studies were included with 249 animals (129 treated with RSV and 120 as controls). The pooled analysis revealed that RSV administration significantly decreased serum creatinine (SCr) levels (16 studies, n = 243, WMD = -58.13, 95% CI = -79.26 to -37.00, p < 0.00001) and blood urea nitrogen (BUN) levels (12 studies, n = 163, WMD = -34.37, 95% CI = -46.70 to -22.03, p < 0.00001) in the renal I/R injury model. The level of malondialdehyde (MDA), an oxidative stress index, was alleviated [7 studies, n = 106, standardized mean difference (SMD) = -6.05, 95% CI = -8.90 to -3.21, p < 0.0001] and antioxidant enzymes such as glutathione (GSH) (7 studies, n = 115, SMD = 9.25, 95% CI = 5.51-13.00, p < 0.00001) and catalase (CAT) (4 studies, n = 59, SMD = 8.69, 95% CI = 4.35-13.03, p < 0.0001) were increased after treatment of RSV. The subgroup analysis suggested that 5-10 mg/kg of RSV optimally protects against renal I/R injury as both the BUN and SCr levels were significantly decreased at this dosage. The protective effects of RSV against renal I/R injury might be attributed to multiple mechanisms, such as inhibiting oxidative stress, apoptosis, inflammation, fibrillation, and promoting autophagy. For a deeper understanding of the protective effects of RSV, experimental studies on animal models and large randomized controlled trials in humans are needed.

6.
Sci Rep ; 11(1): 15725, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344949

RESUMEN

The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.


Asunto(s)
Metilación de ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Gametogénesis , Lamiales/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta , ARN no Traducido/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
7.
Genome Biol Evol ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34383883

RESUMEN

Fishes of the family Catostomidae ("suckers"; Teleostei: Cypriniformes) are hypothesized to have undergone an allopolyploidy event approximately 60 Ma. However, genomic evidence has previously been unavailable to assess this hypothesis. We sequenced and assembled the first chromosome-level catostomid genome, Chinese sucker (Myxocyprinus asiaticus), and present clear evidence of a catostomid-specific whole-genome duplication (WGD) event ("Cat-4R"). Our results reveal remarkably strong, conserved synteny since this duplication event, as well as between Myxocyprinus and an unduplicated outgroup, zebrafish (Danio rerio). Gene content and repetitive elements are also approximately evenly distributed across homeologous chromosomes, suggesting that both subgenomes retain some function, with no obvious bias in gene fractionation or subgenome dominance. The Cat-4R duplication provides another independent example of genome evolution following WGD in animals, in this case at the extreme end of conserved genome architecture over at least 25.2 Myr since the duplication. The M. asiaticus genome is a useful resource for researchers interested in understanding genome evolution following WGD in animals.


Asunto(s)
Cipriniformes , Duplicación de Gen , Animales , China , Cromosomas , Cipriniformes/genética , Evolución Molecular , Filogenia , Sintenía , Pez Cebra/genética
8.
Front Physiol ; 12: 791036, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095558

RESUMEN

Background: Renal ischemia-reperfusion (I/R) injury is one of the major causes related to acute kidney damage. Melatonin has been shown as a powerful antioxidant, with many animal experiments have been designed to evaluate the therapeutic effect of it to renal I/R injury. Objectives: This systematic review aimed to assess the therapeutic effect of melatonin for renal I/R injury in animal models. Methods and Results: The PubMed, Web of Science, Embase, and Science Direct were searched for animal experiments applying melatonin to treat renal I/R injury to February 2021. Thirty-one studies were included. The pooled analysis showed a greater reduction of blood urea nitrogen (BUN) (21 studies, weighted mean difference (WMD) = -30.00 [-42.09 to -17.91], p < 0.00001), and serum creatinine (SCr) (20 studies, WMD = -0.91 [-1.17 to -0.66], p < 0.00001) treated with melatonin. Subgroup analysis suggested that multiple administration could reduce the BUN compared with control. Malondialdehyde and myeloperoxidase were significantly reduced, meanwhile, melatonin significantly improved the activity of glutathione, as well as superoxide dismutase. The possible mechanism for melatonin to treat renal I/R injury is inhibiting endoplasmic reticulum stress, apoptosis, inflammation, autophagy, and fibrillation in AKI to chronic kidney disease. Conclusions: From the available data of small animal studies, this systematic review demonstrated that melatonin could improve renal function and antioxidative effects to cure renal I/R injury through, then multiple administration of melatonin might be more appropriate. Nonetheless, extensive basic experiments are need to study the mechanism of melatonin, then well-designed randomized controlled trials to explore the protective effect of melatonin.

9.
Plant Physiol ; 184(3): 1455-1468, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32900982

RESUMEN

The large sunflower family, Asteraceae, is characterized by compressed, flower-like inflorescences that may bear phenotypically distinct flower types. The CYCLOIDEA (CYC)/TEOSINTE BRANCHED1-like transcription factors (TFs) belonging to the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) protein family are known to regulate bilateral symmetry in single flowers. In Asteraceae, they function at the inflorescence level, and were recruited to define differential flower type identities. Here, we identified upstream regulators of GhCYC3, a gene that specifies ray flower identity at the flower head margin in the model plant Gerbera hybrida We discovered a previously unidentified expression domain and functional role for the paralogous CINCINNATA-like TCP proteins. They function upstream of GhCYC3 and affect the developmental delay of marginal ray primordia during their early ontogeny. At the level of single flowers, the Asteraceae CYC genes show a unique function in regulating the elongation of showy ventral ligules that play a major role in pollinator attraction. We discovered that during ligule development, the E class MADS-box TF GRCD5 activates GhCYC3 expression. We propose that the C class MADS-box TF GAGA1 contributes to stamen development upstream of GhCYC3 Our data demonstrate how interactions among and between the conserved floral regulators, TCP and MADS-box TFs, contribute to the evolution of the elaborate inflorescence architecture of Asteraceae.


Asunto(s)
Asteraceae/crecimiento & desarrollo , Asteraceae/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética
10.
Proc Natl Acad Sci U S A ; 116(34): 17081-17089, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31387975

RESUMEN

The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced 2 lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent "tuning knobs" in the genome adaptive landscapes of given species.


Asunto(s)
Colletotrichum/fisiología , ADN Intergénico , Introgresión Genética , Genoma de Planta , Interacciones Huésped-Patógeno/genética , Magnoliopsida , Persea , Filogenia , Enfermedades de las Plantas , Duplicación de Gen , Magnoliopsida/genética , Magnoliopsida/microbiología , Persea/genética , Persea/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
12.
Commun Biol ; 1: 51, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271934

RESUMEN

At high latitudes, climatic shifts hypothetically initiate recurrent episodes of divergence by isolating populations in glacial refugia-ice-free regions that enable terrestrial species persistence. Upon glacial recession, populations subsequently expand and often come into contact with other independently diverging populations, resulting in gene flow. To understand how recurrent periods of isolation and contact may have impacted evolution at high latitudes, we investigated introgression dynamics in the stoat (Mustela erminea), a Holarctic mammalian carnivore, using whole-genome sequences. We identify two spatio-temporally distinct episodes of introgression coincident with large-scale climatic shifts: contemporary introgression in a mainland contact zone and ancient contact ~200 km south of the contemporary zone, in the archipelagos along North America's North Pacific Coast. Repeated episodes of gene flow highlight the central role of cyclic climates in structuring high-latitude diversity, through refugial divergence and introgressive hybridization. When introgression is followed by allopatric isolation (e.g., insularization) it may ultimately expedite divergence.

13.
Front Plant Sci ; 9: 2000, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30745906

RESUMEN

Crassulacean acid metabolism (CAM) photosynthesis is a modification of the core C3 photosynthetic pathway that improves the ability of plants to assimilate carbon in water-limited environments. CAM plants fix CO2 mostly at night, when transpiration rates are low. All of the CAM pathway genes exist in ancestral C3 species, but the timing and magnitude of expression are greatly altered between C3 and CAM species. Understanding these regulatory changes is key to elucidating the mechanism by which CAM evolved from C3. Here, we use two closely related species in the Orchidaceae, Erycina pusilla (CAM) and Erycina crista-galli (C3), to conduct comparative transcriptomic analyses across multiple time points. Clustering of genes with expression variation across the diel cycle revealed some canonical CAM pathway genes similarly expressed in both species, regardless of photosynthetic pathway. However, gene network construction indicated that 149 gene families had significant differences in network connectivity and were further explored for these functional enrichments. Genes involved in light sensing and ABA signaling were some of the most differently connected genes between the C3 and CAM Erycina species, in agreement with the contrasting diel patterns of stomatal conductance in C3 and CAM plants. Our results suggest changes to transcriptional cascades are important for the transition from C3 to CAM photosynthesis in Erycina.

14.
Int J Mol Med ; 41(1): 555-563, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29115406

RESUMEN

Berberine (BBR) has previously been found to exert beneficial effects on renal injury in experimental rats. However, the mechanisms underlying these effects are not yet fully understood. Tumor necrosis factor (TNF) receptor-associated factor 5 (TRAF5) has been demonstrated to mediate the activation of nuclear factor-κB (NF-κB), which has been implicated in the pathogenesis of chronic kidney disease (CKD). The aim of this study was to investigate the effects of BBR on kidney injury and the activation of the NF-κB signaling pathway in mouse podocytes. TRAF5 was found to be overexpressed in patients with CKD and chronic renal failure (CRF) (data obtained from the dataset GSE48944, as well as from patients at Shuguang Hospital). TRAF5 overexpression significantly inhibited cell viability and induced the apoptosis of mouse podocytes. However, BBR prevented the decrease in cell viability and the apoptosis induced by TRAF5 overexpression. The NF-κB inhibitor, caffeic acid phenethyl ester (CAPE), mimicked the protective effects of BBR, as evidenced by the increased expression of nephrin and podocin, and the decreased the expression of caspase-3 and the ratio of Bax/Bcl-2. Moreover, BBR prevented the decrease in cell viability decrease and the apoptosis induced by TNF-α, interleukin (IL)-6 and lipopolysaccharide (LPS). Taken together, our data indicate that BBR exerts protective effects against CRF partly through the TRAF5-mediated activation of the NF-κB signaling pathway in mouse podocytes.


Asunto(s)
Berberina/administración & dosificación , Fallo Renal Crónico/tratamiento farmacológico , Podocitos/efectos de los fármacos , Factor 5 Asociado a Receptor de TNF/genética , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fallo Renal Crónico/genética , Fallo Renal Crónico/patología , Ratones , FN-kappa B/genética , Podocitos/patología , Activación Transcripcional/efectos de los fármacos
15.
Proc Biol Sci ; 284(1868)2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29187630

RESUMEN

Although anecdotally associated with local bears (Ursus arctos and U. thibetanus), the exact identity of 'hominid'-like creatures important to folklore and mythology in the Tibetan Plateau-Himalaya region is still surrounded by mystery. Recently, two purported yeti samples from the Himalayas showed genetic affinity with an ancient polar bear, suggesting they may be from previously unrecognized, possibly hybrid, bear species, but this preliminary finding has been under question. We conducted a comprehensive genetic survey of field-collected and museum specimens to explore their identity and ultimately infer the evolutionary history of bears in the region. Phylogenetic analyses of mitochondrial DNA sequences determined clade affinities of the purported yeti samples in this study, strongly supporting the biological basis of the yeti legend to be local, extant bears. Complete mitochondrial genomes were assembled for Himalayan brown bear (U. a. isabellinus) and black bear (U. t. laniger) for the first time. Our results demonstrate that the Himalayan brown bear is one of the first-branching clades within the brown bear lineage, while Tibetan brown bears diverged much later. The estimated times of divergence of the Tibetan Plateau and Himalayan bear lineages overlap with Middle to Late Pleistocene glaciation events, suggesting that extant bears in the region are likely descendants of populations that survived in local refugia during the Pleistocene glaciations.


Asunto(s)
Evolución Biológica , ADN Mitocondrial/genética , Genoma Mitocondrial , Filogenia , Ursidae/clasificación , Animales , Tibet , Ursidae/genética
16.
New Phytol ; 216(3): 939-954, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28742220

RESUMEN

The pseudanthial inflorescences of the sunflower family, Asteraceae, mimic a solitary flower but are composed of multiple flowers. Our studies in Gerbera hybrida indicate functional diversification for SEPALLATA (SEP)-like MADS box genes that often function redundantly in other core eudicots. We conducted phylogenetic and expression analysis for eight SEP-like GERBERA REGULATOR OF CAPITULUM DEVELOPMENT (GRCD) genes, including previously unstudied gene family members. Transgenic gerbera plants were used to infer gene functions. Adding to the previously identified stamen and carpel functions for GRCD1 and GRCD2, two partially redundant genes, GRCD4 and GRCD5, were found to be indispensable for petal development. Stepwise conversion of floral organs into leaves in the most severe RNA interference lines suggest redundant and additive GRCD activities in organ identity regulation. We show conserved and redundant functions for several GRCD genes in regulation of flower meristem maintenance, while functional diversification for three SEP1/2/4 clade genes in regulation of inflorescence meristem patterning was observed. GRCD genes show both specialized and pleiotropic functions contributing to organ differentiation and flower meristem fate, and uniquely, to patterning of the inflorescence meristem. Altogether, we provide an example of how plant reproductive evolution has used conserved genetic modules for regulating the elaborate inflorescence architecture in Asteraceae.


Asunto(s)
Asteraceae/genética , Inflorescencia/genética , Proteínas de Plantas/genética , Asteraceae/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Meristema/genética , Familia de Multigenes , Filogenia , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Interferencia de ARN
18.
Eur Spine J ; 26(9): 2308-2317, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28660372

RESUMEN

PURPOSE: Traditional Chinese cervical manipulation (TCCM) has been claimed as an effective treatment for diseases of the cervical spine, but its biomechanical effects on the vertebral body and intervertebral discs remain unclear. The aim of this study was to develop and validate a detailed finite element model of cervical spine, which was then used to investigate the biomechanical response of the cervical spine to TCCM. METHODS: The model of a C2-T1 cervical spine was constructed based on CT images of a healthy male volunteer and validated against published in vitro studies under different loading conditions. The detailed force-time data of TCCM were measured on the same volunteer through dynamometric diaphragms. The data were applied on the validated finite element model to simulate TCCM. RESULTS: The current model could offer potentials to effectively reflect the behavior of human cervical spine suitable for biomechanics studies of TCCM. Under simulated TCCM condition, the stress distributions in cervical spine and intervertebral discs could not be completely explained through the traditional theory. CONCLUSION: Spinal manipulation, or TCCM, might play no role in reducing intradiscal pressure for treating cervical spondylosis. It could cause less stress concentration in intervertebral discs while operating spinal manipulation or TCCM when the adjustment points was chosen near the root of spinous process than the top of spinous process.


Asunto(s)
Vértebras Cervicales/fisiología , Disco Intervertebral/fisiología , Manipulación Ortopédica/métodos , Manipulación Espinal/métodos , Medicina Tradicional China , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Masculino , Modelos Biológicos , Estrés Mecánico
19.
Nat Genet ; 49(6): 904-912, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28481341

RESUMEN

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


Asunto(s)
Betula/genética , Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Adaptación Biológica/genética , Betula/fisiología , Finlandia , Duplicación de Gen , Genética de Población , Filogenia , Densidad de Población
20.
Proc Natl Acad Sci U S A ; 114(22): E4435-E4441, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507139

RESUMEN

Utricularia gibba, the humped bladderwort, is a carnivorous plant that retains a tiny nuclear genome despite at least two rounds of whole genome duplication (WGD) since common ancestry with grapevine and other species. We used a third-generation genome assembly with several complete chromosomes to reconstruct the two most recent lineage-specific ancestral genomes that led to the modern U. gibba genome structure. Patterns of subgenome dominance in the most recent WGD, both architectural and transcriptional, are suggestive of allopolyploidization, which may have generated genomic novelty and led to instantaneous speciation. Syntenic duplicates retained in polyploid blocks are enriched for transcription factor functions, whereas gene copies derived from ongoing tandem duplication events are enriched in metabolic functions potentially important for a carnivorous plant. Among these are tandem arrays of cysteine protease genes with trap-specific expression that evolved within a protein family known to be useful in the digestion of animal prey. Further enriched functions among tandem duplicates (also with trap-enhanced expression) include peptide transport (intercellular movement of broken-down prey proteins), ATPase activities (bladder-trap acidification and transmembrane nutrient transport), hydrolase and chitinase activities (breakdown of prey polysaccharides), and cell-wall dynamic components possibly associated with active bladder movements. Whereas independently polyploid Arabidopsis syntenic gene duplicates are similarly enriched for transcriptional regulatory activities, Arabidopsis tandems are distinct from those of U. gibba, while still metabolic and likely reflecting unique adaptations of that species. Taken together, these findings highlight the special importance of tandem duplications in the adaptive landscapes of a carnivorous plant genome.


Asunto(s)
Carnivoría/fisiología , Genoma de Planta , Lamiales/genética , Lamiales/fisiología , Adaptación Fisiológica/genética , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Evolución Molecular , Duplicación de Gen , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Poliploidía , Análisis de Secuencia de ADN , Sintenía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA