Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Sci Rep ; 14(1): 18418, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117695

RESUMEN

Bacterial testicular inflammation is one of the important causes of male infertility. Using plant-derived compounds to overcome the side effects of antibiotics is an alternative treatment strategy for many diseases. Schizandrin B (SchB) is a bioactive compound of herbal medicine Schisandra chinensis which has multiple pharmacological effects. However its effect and the mechanism against testicular inflammation are unknown. Here we tackled these questions using models of lipopolysaccharide (LPS)-induced mice and -Sertoli cells (SCs). Histologically, SchB ameliorated the LPS-induced damages of the seminiferous epithelium and blood-testicular barrier, and reduced the production of pro-inflammatory mediators in mouse testes. Furthermore, SchB decreased the levels of pro-inflammatory mediators and inhibited the nuclear factor kB (NF-κB) and MAPK (especially JNK) signaling pathway phosphorylation in LPS-induced mSCs. The bioinformatics analysis based on receptor prediction and the molecular docking was further conducted. We targeted androgen receptor (AR) and illustrated that AR might bind with SchB in its function. Further experiments indicate that the AR expression was upregulated by LPS stimulation, while SchB treatment reversed this phenomenon; similarly, the expression of the JNK-related proteins and apoptotic-related protein were also reversed after AR activator treatment. Together, SchB mitigates LPS-induced inflammation and apoptosis by inhibiting the AR-JNK pathway.


Asunto(s)
Apoptosis , Ciclooctanos , Lignanos , Lipopolisacáridos , Compuestos Policíclicos , Células de Sertoli , Animales , Masculino , Ciclooctanos/farmacología , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/uso terapéutico , Lignanos/farmacología , Lignanos/uso terapéutico , Apoptosis/efectos de los fármacos , Ratones , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Receptores Androgénicos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Simulación del Acoplamiento Molecular , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , FN-kappa B/metabolismo
2.
Nat Commun ; 15(1): 6350, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39068213

RESUMEN

The arginyl-transferase ATE1 is a tRNA-dependent enzyme that covalently attaches an arginine molecule to a protein substrate. Conserved from yeast to humans, ATE1 deficiency in mice correlates with defects in cardiovascular development and angiogenesis and results in embryonic lethality, while conditional knockouts exhibit reproductive, developmental, and neurological deficiencies. Despite the recent revelation of the tRNA binding mechanism and the catalytic cycle of yeast ATE1, the structure-function relationship of ATE1 in higher organisms is not well understood. In this study, we present the three-dimensional structure of human ATE1 in an apo-state and in complex with its tRNA cofactor and a peptide substrate. In contrast to its yeast counterpart, human ATE1 forms a symmetric homodimer, which dissociates upon binding of a substrate. Furthermore, human ATE1 includes a unique and extended loop that wraps around tRNAArg, creating extensive contacts with the T-arm of the tRNA cofactor. Substituting key residues identified in the substrate binding site of ATE1 abolishes enzymatic activity and results in the accumulation of ATE1 substrates in cells.


Asunto(s)
Aminoaciltransferasas , Multimerización de Proteína , Humanos , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/química , ARN de Transferencia/metabolismo , Sitios de Unión , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/química , Modelos Moleculares , Unión Proteica , Animales , Ratones , Células HEK293
3.
Drug Des Devel Ther ; 18: 3143-3156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071815

RESUMEN

Background: Morin can alleviate vincristine-induced neuropathic pain via inhibiting neuroinflammation. Microglial cells play an important role in initiating and maintenance of pain and neuroinflammation. It remains unclear whether morin exerts antinociceptive properties through the regulation of microglial cells. This study aimed to elucidate the mechanisms of morin against neuropathic pain focusing on microglial cells. Methods: The thermal withdrawal latency and mechanical withdrawal threshold were used as measures of pain behaviours. Histological abnormalities of the sciatic nerve were observed with transmission electron microscopy. The sciatic functional index and the sciatic nerve conduction velocity were used as measures of the functional deficits of the sciatic nerve. Inflammatory factors were detected using ELISA. The expression of M1/M2 polarization markers of microglia and nuclear factor κB (NF-κB) p65 were measured by immunofluorescence, real-time quantitative PCR and Western blotting. Results: Morin alleviated vincristine-induced abnormal pain, sciatic nerve injury, and neuroinflammatory response in rats. Furthermore, morin decreased the expression of NF-κB P65 and M1 activation markers, increased the expression of M2 activation markers. Additionally, phorbol 12-myristate 13-acetate reversed the effects of morin on microglial polarization, the production of inflammatory factors and neuropathic pain, while ammonium pyrrolidine dithiocarbamate showed the opposite effects. Conclusion: Our results demonstrate that morin inhibits neuroinflammation to alleviate vincristine-induced neuropathic pain via inhibiting the NF-κB signalling pathway to regulate M1/M2 microglial polarization.


Asunto(s)
Flavonoides , Microglía , Neuralgia , Factor de Transcripción ReIA , Vincristina , Animales , Masculino , Ratas , Relación Dosis-Respuesta a Droga , Flavonas , Flavonoides/farmacología , Flavonoides/administración & dosificación , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuralgia/patología , Ratas Sprague-Dawley , Factor de Transcripción ReIA/metabolismo , Vincristina/farmacología
4.
Adv Sci (Weinh) ; : e2400205, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965798

RESUMEN

Physical exercise has beneficial effect on anxiety disorders, but the underlying molecular mechanism remains largely unknown. Here, it is demonstrated that physical exercise can downregulate the S-nitrosylation of gephyrin (SNO-gephyrin) in the basolateral amygdala (BLA) to exert anxiolytic effects. It is found that the level of SNO-gephyrin is significantly increased in the BLA of high-anxiety rats and a downregulation of SNO-gephyrin at cysteines 212 and 284 produced anxiolytic effect. Mechanistically, inhibition of SNO-gephyrin by either Cys212 or Cys284 mutations increased the surface expression of GABAAR γ2 and the subsequent GABAergic neurotransmission, exerting anxiolytic effect in male rats. On the other side, overexpression of neuronal nitric oxide synthase in the BLA abolished the anxiolytic-like effects of physical exercise. This study reveals a key role of downregulating SNO-gephyrin in the anxiolytic effects of physical exercise, providing a new explanation for protein post-translational modifications in the brain after exercise.

5.
Langmuir ; 40(31): 15996-16029, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39041346

RESUMEN

Lithium-sulfur (Li-S) batteries are promising energy storage devices owing to their high theoretical specific capacity and energy density. However, several challenges, including volume expansion, slow reaction kinetics, polysulfide shuttle effect and lithium dendrite formation, hinder their commercialization. Separators are a key component of Li-S batteries. Traditional separators, made of polypropylene and polyethylene, have certain limitations that should be addressed. Therefore, this review discusses the basic properties and mechanisms of Li-S battery separators, focuses on preparing different functionalized separators to mitigate the shuttle effect of polysulfides. This review also introduces future research trends, emphasizing the potential of separator functionalization in advancing the Li-S battery technology.

6.
World J Clin Cases ; 12(20): 4180-4190, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39015915

RESUMEN

BACKGROUND: Rhinophyma, a late-stage subtype of rosacea, is characterized by excessive sebaceous glands and connective tissue proliferation. Patients may experience respiratory disturbances and psychological distress that significantly affect their quality of life when excessive nasal hyperplasia obstructs the external nasal valves. Surgery is the treatment of choice for rhinophyma. However, excessive bleeding, scarring, pigmentation, and high recurrence rates frequently characterize current surgical methods. AIM: To evaluate the clinical effectiveness and recurrence rates after treating severe rhinophyma with the five-blade scratcher. METHODS: This study retrospectively analyzed the clinical records of 28 patients with severe rhinophyma rosacea. The Global Flushing Severity Score (GFSS), Clinician Erythema Assessment (CEA), Rhinophyma Severity Index (RHISI), Glasgow Benefit Inventory (GBI), and satisfaction scores were used to assess the recovery of patients at 6 months and 5 years, with the recurrence rate calculated at 5 years postoperatively. In addition, the levels of pro-inflammatory factors (TNF-α, IL-1ß, and IL-6) in the serum of patients before and after surgery were detected by ELISA. RESULTS: The GFSS, CEA, and RHISI scores at 6 months and 5 years postoperatively were significantly lower than those preoperatively (P < 0.001 for both periods). Five-blade scratcher treatment greatly benefits patients as demonstrated by the GBI and patient satisfaction. A small number of patients (7/28, 25%) reported recurrence after surgical treatment for rhinophyma in our department that was not more serious than before treatment. The expression of pro-inflammatory factors (TNF-α, IL-1ß, and IL-6) in the patient's serum was significantly reduced after surgery of five-blade scratcher. CONCLUSION: The five-blade scratcher treatment demonstrates notable advantages, including simplicity, safety, efficacy, and cost-effectiveness, coupled with reduced bleeding, minimized scarring, lower recurrence rates, reduced the level of pro-inflammatory factors and improved patient satisfaction. Consequently, this therapeutic modality exhibits a viable option for individuals afflicted with severe rhinophyma.

7.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38854050

RESUMEN

Protein arginylation is an essential posttranslational modification (PTM) catalyzed by arginyl-tRNA-protein transferase 1 (ATE1) in mammalian systems. Arginylation features a post-translational conjugation of an arginyl to a protein, making it extremely challenging to differentiate from translational arginine residues with the same mass in a protein sequence. Here we present a general activity-based arginylation profiling (ABAP) platform for the unbiased discovery of arginylation substrates and their precise modification sites. This method integrates isotopic arginine labeling into an ATE1 assay utilizing biological lysates (ex vivo) rather than live cells, thus eliminating translational bias derived from the ribosomal activity and enabling bona fide arginylation identification using isotopic features. ABAP has been successfully applied to an array of peptide, protein, cell, patient, and animal tissue samples using 20 µg sample input, with 229 unique arginylation sites revealed from human proteomes. Representative sites were validated and followed up for their biological functions. The developed platform is globally applicable to the aforementioned sample types and therefore paves the way for functional studies of this difficult-to-characterize protein modification.

8.
Life Sci ; 352: 122866, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936605

RESUMEN

Chronic kidney disease (CKD) represents a significant and escalating global health challenge, with morbidity and mortality rates rising steadily. Evidence increasingly implicates perirenal adipose tissue (PRAT) deposition as a contributing factor in the pathogenesis of CKD. This review explores how PRAT deposition may exert deleterious effects on renal structure and function. The anatomical proximity of PRAT to the kidneys not only potentially causes mechanical compression but also leads to the dysregulated secretion of adipokines and inflammatory mediators, such as adiponectin, leptin, visfatin, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and exosomes. Additionally, PRAT deposition may contribute to renal lipotoxicity through elevated levels of free fatty acids (FFA), triglycerides (TAG), diacylglycerol (DAG), and ceramides (Cer). PRAT deposition is also linked to the hyperactivation of the renin-angiotensin-aldosterone system (RAAS), which further exacerbates CKD progression. Recognizing PRAT deposition as an independent risk factor for CKD underscores the potential of targeting PRAT as a novel strategy for the prevention and management of CKD. This review further discusses interventions that could include measuring PRAT thickness to establish a baseline, managing metabolic risk factors that promote its deposition, and inhibiting key PRAT-induced signaling pathways.


Asunto(s)
Tejido Adiposo , Progresión de la Enfermedad , Insuficiencia Renal Crónica , Sistema Renina-Angiotensina , Humanos , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Sistema Renina-Angiotensina/fisiología , Riñón/metabolismo , Riñón/patología , Animales , Adipoquinas/metabolismo
9.
Plant Sci ; 346: 112162, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901780

RESUMEN

CrRLK1L subfamily members are involved in diverse growth- and development-related processes in Arabidopsis. However, the functions of their counterparts in rice are unknown. Here, OsANX expression was detected in developing inflorescences, mature pollen grains, and growing pollen tubes, and it was localized to the plasma membrane in pollen grains and tobacco epidermal cells. Homozygous osanx progeny could not be segregated from the CRISPR/Cas9-edited mutants osanx-c1+/- and osanx-c2+/-, and such progeny were segregated only occasionally from osanx-c3+/-. Further, all three alleles showed osanx male but not female gamete transmission defects, in line with premature pollen tube rupture in osanx-c3. Additionally, osanx-c3 exhibited precocious flowering, excessively branched inflorescences, and an extremely low seed setting rate of 1.4 %, while osanx-c2+/- and osanx-c3+/- had no obvious defects in inflorescence development or the seed setting rate compared to wild-type Nipponbare (Nip). Consistent with this, the complemented line pPS1:OsANX-GFP/osanx-c2 (PSC), in which the lack of OsANX expression was inflorescence-specific, showed slightly earlier flowering and overly-branched panicles. Multiple inflorescence meristem transition-related and inflorescence architecture-related genes were expressed at higher levels in osanx-c3 than in Nip; thus, they may partially account for the aforementioned mutant phenotypes. Our findings broaden our understanding of the biological functions of OsANX in rice.


Asunto(s)
Inflorescencia , Oryza , Proteínas de Plantas , Tubo Polínico , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oryza/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inflorescencia/genética , Inflorescencia/crecimiento & desarrollo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/genética , Flores/crecimiento & desarrollo , Flores/genética , Regulación de la Expresión Génica de las Plantas
10.
Int J Lab Hematol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874282

RESUMEN

INTRODUCTION: In recent years, the correlation between CD117 antigen and the prognosis of hematological malignancies has been demonstrated. However, there is limited literature on the clinical significance of CD117 antigen in acute promyelocytic leukemia (APL). The aim of this study was to retrospectively analyze the clinical features and prognostic significance of CD117 in APL. METHODS: In this study, we retrospectively investigated the clinicopathological characteristics, outcome, and prognostic impact of negative CD117 expression (CD117-) in 169 APL patients treated with all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) containing regimen. RESULTS: The median follow-up period was 63.0 months. CD117- was detected in 13 APL patients (7.7%). No significant differences were found in baseline characteristics between CD117+ and CD117- subgroups. However, compared to CD117+ APL, the incidence of early death (ED) was significantly higher in CD117- APL (p = 0.023). By multivariate analysis, CD117- was an independent adverse prognostic factor for overall survival (OS) and progression-free survival (PFS) (p = 0.022 and p = 0.014, respectively). CONCLUSIONS: To sum up, CD117- is associated with greater risk of ED and has the statistical power to predict inferior OS and PFS, this marker may be considered to build prognostic scores for risk-adapted therapeutic strategies in APL management.

11.
Ibrain ; 10(2): 197-216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915944

RESUMEN

This review comprehensively assesses the epidemiology, interaction, and impact on patient outcomes of perioperative sleep disorders (SD) and perioperative neurocognitive disorders (PND) in the elderly. The incidence of SD and PND during the perioperative period in older adults is alarmingly high, with SD significantly contributing to the occurrence of postoperative delirium. However, the clinical evidence linking SD to PND remains insufficient, despite substantial preclinical data. Therefore, this study focuses on the underlying mechanisms between SD and PND, underscoring that potential mechanisms driving SD-induced PND include uncontrolled central nervous inflammation, blood-brain barrier disruption, circadian rhythm disturbances, glial cell dysfunction, neuronal and synaptic abnormalities, impaired central metabolic waste clearance, gut microbiome dysbiosis, hippocampal oxidative stress, and altered brain network connectivity. Additionally, the review also evaluates the effectiveness of various sleep interventions, both pharmacological and nonpharmacological, in mitigating PND. Strategies such as earplugs, eye masks, restoring circadian rhythms, physical exercise, noninvasive brain stimulation, dexmedetomidine, and melatonin receptor agonists have shown efficacy in reducing PND incidence. The impact of other sleep-improvement drugs (e.g., orexin receptor antagonists) and methods (e.g., cognitive-behavioral therapy for insomnia) on PND is still unclear. However, certain drugs used for treating SD (e.g., antidepressants and first-generation antihistamines) may potentially aggravate PND. By providing valuable insights and references, this review aimed to enhance the understanding and management of PND in older adults based on SD.

12.
Environ Sci Pollut Res Int ; 31(29): 42075-42087, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861065

RESUMEN

Highly active catalysts with salt and acid/alkali resistance are desired in peroxymonosulfate (PMS) activation processes and marine environment applications. F- and Cl-doped graphene (F-GN and Cl-GN) were prepared via electronegative and atom radius adjustment for tetracycline hydrochloride (TCH) pollution removal to satisfy these requirements. The introduction of special F and Cl functionalities into graphene exhibits superior electron transfer properties for PMS activation, considering the experimental and density functional theory (DFT) calculation results. The TCH degradation efficiency reached up to 80% under various pH and salt disturbance conditions with F-GN and Cl-GN. Cl-GN exhibited an activity superior to F-GN due to the higher electron polarization effect of C atoms adjacent to Cl atoms. The presence of more positive charged C sites in Cl-GN (around Cl doping) is more favorable for PMS attachment and sequence radical generation than F-GN. In addition, the main active species functionalized during reaction included ·OH and SO4-·, and the stability of F-GN and Cl-GN was confirmed to be over 60% by recycle test. Final research results provide an effective strategy for designing and preparing PMS activators resistant to salt, acid, and alkali, thereby expanding their application potential.


Asunto(s)
Grafito , Peróxidos , Tetraciclina , Tetraciclina/química , Grafito/química , Catálisis , Peróxidos/química
13.
Nat Immunol ; 25(6): 1046-1058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816618

RESUMEN

The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.


Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Pulmonar de Lewis , Factor Nuclear 1-alfa del Hepatocito , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T , Animales , Linfocitos T CD8-positivos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Ratones , Carcinoma Pulmonar de Lewis/inmunología , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Transducción de Señal/inmunología , Ratones Noqueados , Activación de Linfocitos/inmunología , Autorrenovación de las Células , Ratones Transgénicos , Proteína 2 de la Respuesta de Crecimiento Precoz
14.
Gen Comp Endocrinol ; 353: 114513, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604437

RESUMEN

Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-ß superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-ß family members, such as TGF-ß1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-ß signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-ß signaling for the treatment of muscle atrophy.


Asunto(s)
Caquexia , Atrofia Muscular , Miostatina , Neoplasias , Sarcopenia , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Caquexia/metabolismo , Caquexia/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Sarcopenia/metabolismo , Sarcopenia/patología , Transducción de Señal/fisiología , Neoplasias/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Factor de Crecimiento Transformador beta/metabolismo , Miostatina/metabolismo , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología
15.
Plants (Basel) ; 13(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38592851

RESUMEN

Receptor kinases DRUS1 (Dwarf and Runtish Spikelet1) and DRUS2 are orthologues of the renowned Arabidopsis thaliana gene FERONIA, which play redundant roles in rice growth and development. Whether the two duplicated genes perform distinct functions in response to environmental stress is largely unknown. Here, we found that osmotic stress (OS) and ABA increased DRUS1 expression while decreasing DRUS2. When subjected to osmotic stress, the increased DRUS1 in drus2 mutants suppresses the OsIAA repressors, resulting in a robust root system with an increased number of adventitious and lateral roots as well as elongated primary, adventitious, and lateral roots, conferring OS tolerance. In contrast, the decreased DRUS2 in drus1-1 mutants are not sufficient to suppress OsIAA repressors, leading to a feeble root system with fewer adventitious and lateral roots and hindering seminal root growth, rendering OS intolerance. All these findings offer valuable insights into the biological significance of the duplication of two homologous genes in rice, wherein, if one is impaired, the other one is able to continue auxin-signaling-mediated root growth and development to favor resilience to environmental stress, such as water shortage.

16.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675512

RESUMEN

The geometrical structures, relative stabilities, and electronic and magnetic properties of niobium carbon clusters, Nb7Cn (n = 1-7), are investigated in this study. Density functional theory (DFT) calculations, coupled with the Saunders Kick global search, are conducted to explore the structural properties of Nb7Cn (n = 1-7). The results regarding the average binding energy, second-order difference energy, dissociation energy, HOMO-LUMO gap, and chemical hardness highlight the robust stability of Nb7C3. Analysis of the density of states suggests that the molecular orbitals of Nb7Cn primarily consist of orbitals from the transition metal Nb, with minimal involvement of C atoms. Spin density and natural population analysis reveal that the total magnetic moment of Nb7Cn predominantly resides on the Nb atoms. The contribution of Nb atoms to the total magnetic moment stems mainly from the 4d orbital, followed by the 5p, 5s, and 6s orbitals.

17.
Anesth Analg ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446699

RESUMEN

BACKGROUND: The aim of this study was to investigate the effects of esketamine on the risk of postoperative delirium (POD) in adults undergoing on-pump cardiac valve surgery. METHODS: In this randomized, triple-blind, controlled trial, 116 adult patients with an American Society of Anesthesiologists (ASA) grade Ⅱ or Ⅲ and a New York Heart Association (NYHA) grade Ⅱ or Ⅲ who underwent cardiac valve surgery with cardiopulmonary bypass were included. Esketamine (0.25 mg/kg) or normal saline was administered intravenously before anesthesia induction. The primary outcome was POD, defined as a positive delirium assessment according to the 3-minute confusion assessment method (CAM) or the confusion assessment method for the intensive care unit (CAM-ICU) on a twice-daily basis for 7 days after surgery. Delirium duration and the delirium subtype were also recorded. The cognitive status of patients was measured according to the Mini-Mental State Examination at baseline, discharge, 30 days postoperatively and 3 months postoperatively. RESULTS: A total of 112 patients (mean age, 52 years; 53.6% female) were enrolled; 56 were assigned to receive esketamine, and 56 were assigned to receive placebo. POD occurred in 13 (23.2%) patients in the esketamine group and in 25 (44.6%) patients in the placebo group (relative risk [RR], 0.52, 95% confidence interval [CI], 0.28-0.91; P = .018). Thirteen patients (23.2%) in the esketamine group and 24 (42.9%) patients in the placebo group had multiple episodes of delirium (RR, 0.54, 95% CI, 0.28-0.92), and 13 (23.2%) vs 22 (39.3%) patients exhibited the hyperactive subtype. CONCLUSIONS: A single dose of esketamine (0.25 mg/kg) injected intravenously before anesthesia induction reduced the incidence of delirium in relatively young patients with ASA grade Ⅱ or Ⅲ who underwent on-pump cardiac surgery.

18.
Chem Commun (Camb) ; 60(27): 3717-3720, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38481359

RESUMEN

The effective and mild [4+1] annulation of ninhydrin-derived MBH carbonates with α,ß-unsaturated ketones has been developed, providing a wide range of multisubstituted furans in high yields (up to 90%) with excellent ß-regioselectivities. In contrast, the polysubstituted cyclopentenes bearing dispiro-bisindanedione motifs were obtained via classical [3+2] annulations by employing ninhydrin-derived MBH carbonates with 2-arylidene-1,3-indandiones under the same catalytic conditions. Furthermore, the structures of two kinds of cycloadducts were straightforwardly confirmed through X-ray diffraction analysis.

19.
Sci Total Environ ; 926: 172066, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38556022

RESUMEN

The interactions and collective impacts of different types of hazards within a compound hazard system, along with the influence of geographical covariates on flooding are presently unclear. Understanding these relationships is crucial for comprehending the formation and dynamic processes of the hazard chain and improving the ability to identify flood warning signals in complex hazard scenarios. In this study, we presented a multivariate spatial extreme value hierarchical (MSEVH) framework to assess the spatial extreme water levels (EWL) at different return levels under the influence of a hazard chain and geographical covariates. The Pearl River Delta (PRD) was selected as a research example to assess the effectiveness of the MSEVH framework. Firstly, we identified a hazard chain (extreme streamflow from the Xijiang River (XR) - extreme streamflow from the Beijiang River (BR) - extreme sea level) and three geographical covariates influencing EWL in the PRD. Then, we compared four hazard scenarios in the MSEVH framework to evaluate the spatial EWL at different return levels under the influence of the hazard chain in the PRD. The final step involves assessing spatial EWL with the effect of the hazard chain and geographical covariates. The results indicate that when extreme streamflow from XR and BR occurs concurrently, the extreme streamflow from BR weakens the influence of extreme streamflow from XR on EWL in the PRD. However, it cannot fully offset the overall impact of extreme streamflow from XR on EWL. In addition, when extreme streamflow from XR, extreme streamflow from BR, and extreme sea level occur simultaneously, the extreme sea level enhances the influence of concurrent extreme streamflow from XR and BR on EWL in the PRD. The proposed MSEVH is not only applicable to the PRD but also shows promising potential for evaluating extreme hydrometeorological variables under the influence of other hazard chains.

20.
Biol Trace Elem Res ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502261

RESUMEN

Iron, an essential trace element, is involved in various physiological processes; however, consumption of excessive iron possesses detrimental effects. In practical feed production, the iron content added to feeds often far exceeds the actual demand, resulting in an excess of iron in the body. The liver as a central regulator of iron homeostasis is susceptible to damage caused by disorders in iron metabolism. A model of hepatic iron overload in laying hens was developed in this study by incorporating iron into their diet, and the specific mechanisms underlying iron overload-induced hepatic injury were investigated. Firstly, this study revealed that a high-iron diet resulted in hepatic iron overload, accompanied by impaired liver function. Next, assessment of oxidative stress markers indicated a decrease in activities of T-SOD and CAT, coupled with an increase in MDA content, pointing to the iron-overloaded liver oxidative stress. Thirdly, the impact of iron overload on hepatic glycolipid and bile acid metabolism-related gene expressions were explored, including PPAR-α, GLUT2, and CYP7A1, highlighting disruptions in hepatic metabolism. Subsequently, analyses of inflammation-related genes such as iNOS and IL-1ß at both protein and mRNA levels demonstrated the presence of inflammation in the liver under conditions of dietary iron overload. Overall, this study provided comprehensive evidence that dietary iron overload contributed to disorders in glycolipid and bile acid metabolism, accompanied by inflammatory responses in laying hens. Further detailing the specific pathways involved and the implications of these findings could offer valuable insights for future research and practical applications in poultry nutrition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA