Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
ChemMedChem ; : e202400527, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289154

RESUMEN

In the context of age-related disorders, the receptor of advanced glycation end products (RAGE), plays a pivotal role in the pathogenesis of these conditions by triggering downstream signaling pathways associated with chronic inflammation and oxidative stress. Targeting this inflammaging phenomenon with RAGE antagonists holds promise for interventions with broad implications in healthy aging and the management of age-related conditions. This study explores the structure-activity relationship (SAR) of pyrazoline-based RAGE antagonists synthesized using an ultrasound-assisted green one-pot two-steps methodology. Our investigation identifies phenylurenyl-pyrazoline 2g as a promising candidate, demonstrating superior efficiency compared to the reference antagonist Azeliragon (IC50 = 13 µM). Compound 2g exhibits potent inhibition of the AGE2-BSA/sRAGE interaction (IC50 = 22 µM) and favorable affinity in Microscale Thermophoresis (MST) assays (Kd = 17.1 µM), along with a favorable safety profile, with no apparent cytotoxicity observed in vitro in the MTS assay. These findings underscore the potential of pyrazoline-derived RAGE antagonists as therapeutic agents for addressing age-related disorders.

2.
Br J Pharmacol ; 181(19): 3610-3626, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38812293

RESUMEN

BACKGROUND AND PURPOSE: Nonalcoholic fatty liver disease refers to liver pathologies, ranging from steatosis to steatohepatitis, with fibrosis ultimately leading to cirrhosis and hepatocellular carcinoma. Although several mechanisms have been suggested, including insulin resistance, oxidative stress, and inflammation, its pathophysiology remains imperfectly understood. Over the last decade, a dysfunctional unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress emerged as one of the multiple driving factors. In parallel, growing evidence suggests that insulin-degrading enzyme (IDE), a highly conserved and ubiquitously expressed metallo-endopeptidase originally discovered for its role in insulin decay, may regulate ER stress and UPR. EXPERIMENTAL APPROACH: We investigated, by genetic and pharmacological approaches, in vitro and in vivo, whether IDE modulates ER stress-induced UPR and lipid accumulation in the liver. KEY RESULTS: We found that IDE-deficient mice display higher hepatic triglyceride content along with higher inositol-requiring enzyme 1 (IRE1) pathway activation. Upon induction of ER stress by tunicamycin or palmitate in vitro or in vivo, pharmacological inhibition of IDE, using its inhibitor BDM44768, mainly exacerbated ER stress-induced IRE1 activation and promoted lipid accumulation in hepatocytes, effects that were abolished by the IRE1 inhibitors 4µ8c and KIRA6. Finally, we identified that IDE knockout promotes lipolysis in adipose tissue and increases hepatic CD36 expression, which may contribute to steatosis. CONCLUSION AND IMPLICATIONS: These results unravel a novel role for IDE in the regulation of ER stress and development of hepatic steatosis. These findings pave the way to innovative strategies modulating IDE to treat metabolic diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Insulisina , Metabolismo de los Lípidos , Hígado , Respuesta de Proteína Desplegada , Animales , Humanos , Masculino , Ratones , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/metabolismo , Endorribonucleasas/antagonistas & inhibidores , Insulisina/metabolismo , Insulisina/antagonistas & inhibidores , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Respuesta de Proteína Desplegada/efectos de los fármacos
3.
Clin Exp Rheumatol ; 41(9): 1875-1881, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37279145

RESUMEN

OBJECTIVES: To evaluate whether inflammatory and complement biomarkers are associated with specific characteristics of antiphospholipid syndrome (APS). METHODS: Serum levels of interleukin (IL)-1ß (IL-1ß), IL-6, IL-8, IL-10, tumour necrosis factor (TNF)-α, interferon-α (IFN)-α, IFN-γ, vascular endothelial growth factor (VEGF), intercellular adhesion molecule 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule (VCAM)-1, and plasma levels of soluble C5b-9 (sC5b-9), C3a, C4a, Bb fragment were measured in unselected APS patients. Twenty-five healthy blood donors were included as controls. RESULTS: Between January 2020 and April 2021, 98 APS patients were included outside acute thrombosis (median time from the last APS manifestation: 60 (23;132) months). Levels of IL6, VCAM-1, sC5b-9, C3a, C4a, and Bb were significantly increased in APS patients compared to controls. A cluster analysis allowed to divide patients into two clusters: "inflammatory" (higher levels of IL-6 and VCAM-1) and "complement". In APS, elevated IL-6 was associated with hypertension, diabetes, BMI, and hypertriglyceridaemia. 85% of our APS patients had elevated levels of at least one complement biomarker. Elevated Bb (34%) was associated with aPL positivities, especially with triple aPL positivity (50% vs. 18%, p<0.001). 7/8 patients with history of catastrophic APS had elevated levels of complement biomarkers. CONCLUSIONS: Our findings suggested that APS patients outside acute thrombosis might be divided into two clusters: "inflammatory" and "complement". Elevated IL-6 was associated with cardiovascular risk factors and metabolic parameters, whereas Bb fragments, a marker of alternative pathway complement activation, was strongly associated with aPL profile at highest risk of severe disease.


Asunto(s)
Síndrome Antifosfolípido , Trombosis , Humanos , Síndrome Antifosfolípido/complicaciones , Síndrome Antifosfolípido/diagnóstico , Molécula 1 de Adhesión Celular Vascular/metabolismo , Interleucina-6 , Factor A de Crecimiento Endotelial Vascular , Activación de Complemento , Trombosis/etiología , Trombosis/complicaciones , Proteínas del Sistema Complemento , Biomarcadores
4.
Kidney Int ; 104(2): 353-366, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37164260

RESUMEN

The complement system plays a key role in the pathophysiology of kidney thrombotic microangiopathies (TMA), as illustrated by atypical hemolytic uremic syndrome. But complement abnormalities are not the only drivers of TMA lesions. Among other potential pathophysiological actors, we hypothesized that alteration of heparan sulfate (HS) in the endothelial glycocalyx could be important. To evaluate this, we analyzed clinical and histological features of kidney biopsies from a monocentric, retrospective cohort of 72 patients with TMA, particularly for HS integrity and markers of local complement activation. The role of heme (a major product of hemolysis) as an HS-degrading agent in vitro, and the impact of altering endothelial cell (ECs) HS on their ability to locally activate complement were studied. Compared with a positive control, glomerular HS staining was lower in 57 (79%) patients with TMA, moderately reduced in 20 (28%), and strongly reduced in 37 (51%) of these 57 cases. Strongly reduced HS density was significantly associated with both hemolysis at the time of biopsy and local complement activation (C3 and/or C5b-9 deposits). Using primary endothelial cells (HUVECs, Glomerular ECs), we observed decreased HS expression after short-term exposure to heme, and that artificial HS degradation by exposure to heparinase was associated with local complement activation. Further, prolonged exposure to heme modulated expression of several key genes of glycocalyx metabolism involved in coagulation regulation (C5-EPI, HS6ST1, HS3ST1). Thus, our study highlights the impact of hemolysis on the integrity of endothelial HS, both in patients and in endothelial cell models. Hence, acute alteration of HS may be a mechanism of heme-induced complement activation.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Enfermedades Renales , Microangiopatías Trombóticas , Humanos , Glicocálix/metabolismo , Hemólisis , Células Endoteliales/metabolismo , Estudios Retrospectivos , Activación de Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Enfermedades Renales/metabolismo , Heparitina Sulfato/metabolismo , Hemo/metabolismo
5.
Biology (Basel) ; 12(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37106730

RESUMEN

Sepsis-induced myopathy is characterized by muscle fiber atrophy, mitochondrial dysfunction, and worsened outcomes. Whether whole-body energy deficit participates in the early alteration of skeletal muscle metabolism has never been investigated. Three groups were studied: "Sepsis" mice, fed ad libitum with a spontaneous decrease in caloric intake (n = 17), and "Sham" mice fed ad libitum (Sham fed (SF), n = 13) or subjected to pair-feeding (Sham pair fed (SPF), n = 12). Sepsis was induced by the intraperitoneal injection of cecal slurry in resuscitated C57BL6/J mice. The feeding of the SPF mice was restricted according to the food intake of the Sepsis mice. Energy balance was evaluated by indirect calorimetry over 24 h. The tibialis anterior cross-sectional area (TA CSA), mitochondrial function (high-resolution respirometry), and mitochondrial quality control pathways (RTqPCR and Western blot) were assessed 24 h after sepsis induction. The energy balance was positive in the SF group and negative in both the SPF and Sepsis groups. The TA CSA did not differ between the SF and SPF groups, but was reduced by 17% in the Sepsis group compared with the SPF group (p < 0.05). The complex-I-linked respiration in permeabilized soleus fibers was higher in the SPF group than the SF group (p < 0.05) and lower in the Sepsis group than the SPF group (p < 0.01). Pgc1α protein expression increased 3.9-fold in the SPF mice compared with the SF mice (p < 0.05) and remained unchanged in the Sepsis mice compared with the SPF mice; the Pgc1α mRNA expression decreased in the Sepsis compared with the SPF mice (p < 0.05). Thus, the sepsis-like energy deficit did not explain the early sepsis-induced muscle fiber atrophy and mitochondrial dysfunction, but led to specific metabolic adaptations not observed in sepsis.

6.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35917173

RESUMEN

The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions, such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis. Our data demonstrate that NR1D1 deficiency in mice impaired sarco/endoplasmic reticulum calcium ATPase-dependent (SERCA-dependent) SR calcium uptake. NR1D1 acts on calcium homeostasis by repressing the SERCA inhibitor myoregulin through direct binding to its promoter. Restoration of myoregulin counteracted the effects of NR1D1 overexpression on SR calcium content. Interestingly, myoblasts from patients with Duchenne muscular dystrophy displayed lower NR1D1 expression, whereas pharmacological NR1D1 activation ameliorated SR calcium homeostasis and improved muscle structure and function in dystrophic mdx/Utr+/- mice. Our findings demonstrate that NR1D1 regulates muscle SR calcium homeostasis, pointing to its therapeutic potential for mitigating myopathy.


Asunto(s)
Calcio , Músculo Esquelético , Animales , Calcio/metabolismo , Homeostasis , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Retículo Sarcoplasmático/metabolismo
7.
Antioxidants (Basel) ; 11(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35453408

RESUMEN

Heart failure, mostly associated with cardiac hypertrophy, is a major cause of illness and death. Oxidative stress causes accumulation of reactive oxygen species (ROS), leading to mitochondrial dysfunction, suggesting that mitochondria-targeted therapies could be effective in this context. The purpose of this work was to determine whether mitochondria-targeted therapies could improve cardiac hypertrophy induced by mitochondrial ROS. We used neonatal (NCMs) and adult (ACMs) rat cardiomyocytes hypertrophied by isoproterenol (Iso) to induce mitochondrial ROS. A decreased interaction between sirtuin 3 and superoxide dismutase 2 (SOD2) induced SOD2 acetylation on lysine 68 and inactivation, leading to mitochondrial oxidative stress and dysfunction and hypertrophy after 24 h of Iso treatment. To counteract these mechanisms, we evaluated the impact of the mitochondria-targeted antioxidant mitoquinone (MitoQ). MitoQ decreased mitochondrial ROS and hypertrophy in Iso-treated NCMs and ACMs but altered mitochondrial structure and function by decreasing mitochondrial respiration and mitophagy. The same decrease in mitophagy was found in human cardiomyocytes but not in fibroblasts, suggesting a cardiomyocyte-specific deleterious effect of MitoQ. Our data showed the importance of mitochondrial oxidative stress in the development of cardiomyocyte hypertrophy. We observed that targeting mitochondria by MitoQ in cardiomyocytes impaired the metabolism through defective mitophagy, leading to accumulation of deficient mitochondria.

8.
Front Mol Neurosci ; 15: 841892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250480

RESUMEN

Alzheimer's disease (AD) is the leading cause of dementia. While impaired glucose homeostasis has been shown to increase AD risk and pathological loss of tau function, the latter has been suggested to contribute to the emergence of the glucose homeostasis alterations observed in AD patients. However, the links between tau impairments and glucose homeostasis, remain unclear. In this context, the present study aimed at investigating the metabolic phenotype of a new tau knock-in (KI) mouse model, expressing, at a physiological level, a human tau protein bearing the P301L mutation under the control of the endogenous mouse Mapt promoter. Metabolic investigations revealed that, while under chow diet tau KI mice do not exhibit significant metabolic impairments, male but not female tau KI animals under High-Fat Diet (HFD) exhibited higher insulinemia as well as glucose intolerance as compared to control littermates. Using immunofluorescence, tau protein was found colocalized with insulin in the ß cells of pancreatic islets in both mouse (WT, KI) and human pancreas. Isolated islets from tau KI and tau knock-out mice exhibited impaired glucose-stimulated insulin secretion (GSIS), an effect recapitulated in the mouse pancreatic ß-cell line (MIN6) following tau knock-down. Altogether, our data indicate that loss of tau function in tau KI mice and, particularly, dysfunction of pancreatic ß cells might promote glucose homeostasis impairments and contribute to metabolic changes observed in AD.

10.
Ann Intensive Care ; 11(1): 104, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34216304

RESUMEN

BACKGROUND: Growing evidence associates organ dysfunction(s) with impaired metabolism in sepsis. Recent research has increased our understanding of the role of substrate utilization and mitochondrial dysfunction in the pathophysiology of sepsis-related organ dysfunction. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions. MAIN TEXT: Sepsis is characterized by systemic and organ-specific changes in metabolism. Alterations of oxygen consumption, increased levels of circulating substrates, impaired glucose and lipid oxidation, and mitochondrial dysfunction are all associated with organ dysfunction and poor outcomes in both animal models and patients. The pathophysiological relevance of bioenergetics and metabolism in the specific examples of sepsis-related immunodeficiency, cerebral dysfunction, cardiomyopathy, acute kidney injury and diaphragmatic failure is also described. CONCLUSIONS: Recent understandings in substrate utilization and mitochondrial dysfunction may pave the way for new diagnostic and therapeutic approaches. These findings could help physicians to identify distinct subgroups of sepsis and to develop personalized treatment strategies. Implications for their use as bioenergetic targets to identify metabolism- and mitochondria-targeted treatments need to be evaluated in future studies.

11.
Exp Gerontol ; 146: 111247, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484891

RESUMEN

Sarcopenia is characterized by a loss of muscle mass and function that reduces mobility, diminishes quality of life, and can lead to fall-related injuries. At the intracellular level, mitochondrial population alterations are considered as key contributors to the complex etiology of sarcopenia. Mitochondrial dysfunctions lead to reactive oxygen species production, altered cellular proteostasis, and promotes inflammation. Interestingly, the receptor for advanced glycation end-products (RAGE) is a pro-inflammatory receptor involved in inflammaging. In this review, after a brief description of sarcopenia, we will describe how mitochondria and the pathways controlling mitochondrial population quality could participate to age-induced muscle mass and force loss. Finally, we will discuss the RAGE-ligand axis during aging and its possible connection with mitochondria to control inflammaging and sarcopenia.


Asunto(s)
Sarcopenia , Humanos , Ligandos , Mitocondrias/patología , Calidad de Vida , Receptor para Productos Finales de Glicación Avanzada , Sarcopenia/patología
12.
FEBS J ; 288(11): 3448-3464, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33314778

RESUMEN

Heme's interaction with Toll-like receptor 4 (TLR4) does not fully explain the proinflammatory properties of this hemoglobin-derived molecule during intravascular hemolysis. The receptor for advanced glycation end products (RAGE) shares many features with TLR4 such as common ligands and proinflammatory, prothrombotic, and pro-oxidative signaling pathways, prompting us to study its involvement as a heme sensor. Stable RAGE-heme complexes with micromolar affinity were detected as heme-mediated RAGE oligomerization. The heme-binding site was located in the V domain of RAGE. This interaction was Fe3+ -dependent and competitive with carboxymethyllysine, another RAGE ligand. We confirmed a strong basal gene expression of RAGE in mouse lungs. After intraperitoneal heme injection, pulmonary TNF-α, IL1ß, and tissue factor gene expression levels increased in WT mice but were significantly lower in their RAGE-/- littermates. This may be related to the lower activation of ERK1/2 and Akt observed in the lungs of heme-treated, RAGE-/- mice. Overall, heme binds to RAGE with micromolar affinity and could promote proinflammatory and prothrombotic signaling in vivo, suggesting that this interaction could be implicated in heme-overload conditions.


Asunto(s)
Productos Finales de Glicación Avanzada/genética , Hemo/genética , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor Toll-Like 4/genética , Animales , Sitios de Unión/genética , Hemo/metabolismo , Humanos , Interleucina-1beta/genética , Ligandos , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Proteínas Proto-Oncogénicas c-akt/genética , Factor de Necrosis Tumoral alfa/genética
13.
J Biol Chem ; 295(50): 17310-17322, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33037071

RESUMEN

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , PPAR alfa/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Ácidos Grasos/genética , Estudio de Asociación del Genoma Completo , Humanos , Gotas Lipídicas/metabolismo , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/genética , Obesidad/genética , Obesidad/metabolismo , Oxidación-Reducción , PPAR alfa/genética , Sirtuina 1/genética
14.
Mol Syst Biol ; 16(5): e9156, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32407006

RESUMEN

Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver-identity (LIVER-ID) transcription factor (TF) network, initiated by rapid LIVER-ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER-ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co-recruitment of LIVER-ID TFs and decommissioning of BRD4 super-enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER-ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica/genética , Hepatopatías/metabolismo , Transcriptoma/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Secuenciación de Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hepatopatías/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tapsigargina/toxicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
15.
Commun Biol ; 3(1): 237, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409640

RESUMEN

Like all obligate intracellular pathogens, influenza A virus (IAV) reprograms host cell's glucose and lipid metabolism to promote its own replication. However, the impact of influenza infection on white adipose tissue (WAT), a key tissue in the control of systemic energy homeostasis, has not been yet characterized. Here, we show that influenza infection induces alterations in whole-body glucose metabolism that persist long after the virus has been cleared. We report depot-specific changes in the WAT of IAV-infected mice, notably characterized by the appearance of thermogenic brown-like adipocytes within the subcutaneous fat depot. Importantly, viral RNA- and viral antigen-harboring cells are detected in the WAT of infected mice. Using in vitro approaches, we find that IAV infection enhances the expression of brown-adipogenesis-related genes in preadipocytes. Overall, our findings shed light on the role that the white adipose tissue, which lies at the crossroads of nutrition, metabolism and immunity, may play in influenza infection.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Metabolismo Energético , Infecciones por Orthomyxoviridae/metabolismo , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Gripe Humana/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Elife ; 92020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32091387

RESUMEN

Control of cell death/survival balance is an important feature to maintain tissue homeostasis. Dependence receptors are able to induce either survival or cell death in presence or absence of their ligand, respectively. However, their precise mechanism of action and their physiological importance are still elusive for most of them including the MET receptor. We evidence that pro-apoptotic fragment generated by caspase cleavage of MET localizes to the mitochondria-associated membrane region. This fragment triggers a calcium transfer from endoplasmic reticulum to mitochondria, which is instrumental for the apoptotic action of the receptor. Knock-in mice bearing a mutation of MET caspase cleavage site highlighted that p40MET production is important for FAS-driven hepatocyte apoptosis, and demonstrate that MET acts as a dependence receptor in vivo. Our data shed light on new signaling mechanisms for dependence receptors' control of cell survival/death balance, which may offer new clues for the pathophysiology of epithelial structures.


Asunto(s)
Muerte Celular/fisiología , Supervivencia Celular/fisiología , Proteínas Proto-Oncogénicas c-met/fisiología , Animales , Células Cultivadas , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Transporte de Proteínas , Proteolisis
17.
Acta Diabetol ; 57(7): 819-826, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32086613

RESUMEN

AIMS: Not all people with obesity become glucose intolerant, suggesting differential activation of cellular pathways. The unfolded protein response (UPR) may contribute to the development of insulin resistance in several organs, but its role in skeletal muscle remains debated. Therefore, we explored the UPR activation in muscle from non-diabetic glucose tolerant or intolerant patients with obesity and the impact of bariatric procedures. METHODS: Muscle biopsies from 22 normoglycemic (NG, blood glucose measured 120 min after an oral glucose tolerance test, G120 < 7.8 mM) and 22 glucose intolerant (GI, G120 between 7.8 and 11.1 mM) patients with obesity were used to measure UPR activation by RTqPCR and western blot. Then, UPR was studied in biopsies from 7 NG and 7 GI patients before and 1 year after bariatric surgery. RESULTS: Binding immunoglobulin protein (BIP) protein was ~ 40% higher in the GI compared to NG subjects. Contrastingly, expression of the UPR-related genes BIP, activating transcription factor 6 (ATF6) and unspliced X-box binding protein 1 (XBP1u) were significantly lower and C/EBP homologous protein (CHOP) tended to decrease (p = 0.08) in GI individuals. While BIP protein positively correlated with fasting blood glucose (r = 0.38, p = 0.01), ATF6 and CHOP were associated with G120 (r = - 0.38 and r = - 0.41, p < 0.05) and the Matsuda index (r = 0.37 and r = 0.38, p < 0.05). Bariatric surgery improved metabolic parameters, associated with higher CHOP expression in GI patients, while ATF6 tended to increase (p = 0.08). CONCLUSIONS: CHOP and ATF6 expression decreased in non-diabetic GI patients with obesity and was modified by bariatric surgery. These genes may contribute to glucose homeostasis in human skeletal muscle.


Asunto(s)
Cirugía Bariátrica , Intolerancia a la Glucosa/cirugía , Músculo Esquelético/metabolismo , Obesidad Mórbida/cirugía , Respuesta de Proteína Desplegada , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Adulto , Biopsia , Glucemia/metabolismo , Estudios de Casos y Controles , Estudios de Cohortes , Estrés del Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/fisiología , Femenino , Regulación de la Expresión Génica , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina/fisiología , Masculino , Músculo Esquelético/patología , Obesidad Mórbida/complicaciones , Obesidad Mórbida/metabolismo , Obesidad Mórbida/patología , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo
18.
Sci Rep ; 10(1): 174, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932631

RESUMEN

The gut microbiota participates in the control of energy homeostasis partly through fermentation of dietary fibers hence producing short-chain fatty acids (SCFAs), which in turn promote the secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) by binding to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells. We have previously shown that activation of the nuclear Farnesoid X Receptor (FXR) decreases the L-cell response to glucose. Here, we investigated whether FXR also regulates the SCFA-induced GLP-1 secretion. GLP-1 secretion in response to SCFAs was evaluated ex vivo in murine colonic biopsies and in colonoids of wild-type (WT) and FXR knock-out (KO) mice, in vitro in GLUTag and NCI-H716 L-cells activated with the synthetic FXR agonist GW4064 and in vivo in WT and FXR KO mice after prebiotic supplementation. SCFA-induced GLP-1 secretion was blunted in colonic biopsies from GW4064-treated mice and enhanced in FXR KO colonoids. In vitro FXR activation inhibited GLP-1 secretion in response to SCFAs and FFAR2 synthetic ligands, mainly by decreasing FFAR2 expression and downstream Gαq-signaling. FXR KO mice displayed elevated colonic FFAR2 mRNA levels and increased plasma GLP-1 levels upon local supply of SCFAs with prebiotic supplementation. Our results demonstrate that FXR activation decreases L-cell GLP-1 secretion in response to inulin-derived SCFA by reducing FFAR2 expression and signaling. Inactivation of intestinal FXR using bile acid sequestrants or synthetic antagonists in combination with prebiotic supplementation may be a promising therapeutic approach to boost the incretin axis in type 2 diabetes.


Asunto(s)
Colon/metabolismo , Ácidos Grasos Volátiles/farmacología , Péptido 1 Similar al Glucagón/antagonistas & inhibidores , Microbiota , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Colon/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
19.
Cell Rep ; 29(6): 1410-1418.e6, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693883

RESUMEN

Browning induction or transplantation of brown adipose tissue (BAT) or brown/beige adipocytes derived from progenitor or induced pluripotent stem cells (iPSCs) can represent a powerful strategy to treat metabolic diseases. However, our poor understanding of the mechanisms that govern the differentiation and activation of brown adipocytes limits the development of such therapy. Various genetic factors controlling the differentiation of brown adipocytes have been identified, although most studies have been performed using in vitro cultured pre-adipocytes. We investigate here the differentiation of brown adipocytes from adipose progenitors in the mouse embryo. We demonstrate that the formation of multiple lipid droplets (LDs) is initiated within clusters of glycogen, which is degraded through glycophagy to provide the metabolic substrates essential for de novo lipogenesis and LD formation. Therefore, this study uncovers the role of glycogen in the generation of LDs.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipogénesis/genética , Tejido Adiposo Pardo/metabolismo , Embrión de Mamíferos/metabolismo , Glucógeno/metabolismo , Gotas Lipídicas/metabolismo , Adipocitos Marrones/ultraestructura , Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/ultraestructura , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Glucógeno/ultraestructura , Humanos , Gotas Lipídicas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Interferente Pequeño , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA