Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1359367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529474

RESUMEN

Citrullination is an emerging post-translational modification catalyzed by peptidyl-arginine deiminases (PADs) that convert peptidyl-arginine into peptidyl-citrulline. In humans, the PAD family consists of five isozymes (PADs 1-4, 6) involved in multiple diseases, including cancer. Given that high-risk (hr) human papillomaviruses (HPVs) are the etiological agents of cervical cancer, in this study, we sought to determine whether PAD-mediated protein citrullination would play a functional role in the HPV-driven transformation of epithelial cells. Here we show that both total protein citrullination and PAD4 expression levels are significantly associated with cervical cancer progression. Specifically, epithelial immunostaining for PAD4 revealed an increasingly higher histoscore from low-grade (CIN1) to high-grade (CIN2, CIN3) cervical intraepithelial neoplasia, and invasive squamous cell carcinoma (SCC) lesions, raising the attractive possibility that PAD4 may be used as tumor staging markers. Furthermore, taking advantage of the epidermoid cervical cancer cell line CaSki, which harbors multiple copies of the integrated HPV16 genome, we show that the expression of E6 and E7 HPV oncoproteins is impaired by treatment with the pharmacological pan-PAD inhibitor BB-Cl-amidine. Consistently, p53 and p21, two targets of HPV oncoproteins, are upregulated by the PAD inhibitor, which undergoes cell growth arrest and apoptosis. Altogether, these findings highlight a novel mechanism by which hrHPVs alter host regulatory pathways involved in cell cycle and survival to gain viral fitness, raising the possibility that PADs may represent an attractive target for developing novel host-targeting antivirals effective in preventing cervical cancer progression.


Asunto(s)
Carcinoma de Células Escamosas , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Citrulinación , Proteínas E7 de Papillomavirus/genética , Arginina
2.
Commun Biol ; 7(1): 292, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459109

RESUMEN

Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.


Asunto(s)
Infecciones por Citomegalovirus , Interleucina-6 , Humanos , Interleucina-6/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Citomegalovirus/genética , Células Epiteliales/patología , ADN
3.
PLoS Pathog ; 19(12): e1011849, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38055760

RESUMEN

Herpes simplex virus 1 (HSV-1) is a neurotropic virus that remains latent in neuronal cell bodies but reactivates throughout an individual's life, causing severe adverse reactions, such as herpes simplex encephalitis (HSE). Recently, it has also been implicated in the etiology of Alzheimer's disease (AD). The absence of an effective vaccine and the emergence of numerous drug-resistant variants have called for the development of new antiviral agents that can tackle HSV-1 infection. Host-targeting antivirals (HTAs) have recently emerged as promising antiviral compounds that act on host-cell factors essential for viral replication. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, exhibits a marked inhibitory activity against HSV-1. Furthermore, we show that HSV-1 infection leads to enhanced protein citrullination through transcriptional activation of three PAD isoforms: PAD2, PAD3, and PAD4. Interestingly, PAD3-depletion by specific drugs or siRNAs dramatically inhibits HSV-1 replication. Finally, an analysis of the citrullinome reveals significant changes in the deimination levels of both cellular and viral proteins, with the interferon (IFN)-inducible proteins IFIT1 and IFIT2 being among the most heavily deiminated ones. As genetic depletion of IFIT1 and IFIT2 strongly enhances HSV-1 growth, we propose that viral-induced citrullination of IFIT1 and 2 is a highly efficient HSV-1 evasion mechanism from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection and demonstrate that PAD inhibitors efficiently suppress HSV-1 infection in vitro, which may provide the rationale for their repurposing as HSV-1 antiviral drugs.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiología , Citrulinación , Factores de Restricción Antivirales , Proteínas Virales/metabolismo , Replicación Viral , Antivirales/farmacología , Antivirales/metabolismo
4.
mBio ; 13(3): e0043522, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420480

RESUMEN

Cellular lipid metabolism plays a pivotal role in human cytomegalovirus (HCMV) infection, as increased lipogenesis in HCMV-infected cells favors the envelopment of newly synthesized viral particles. As all cells are equipped with restriction factors (RFs) able to exert a protective effect against invading pathogens, we asked whether a similar defense mechanism would also be in place to preserve the metabolic compartment from HCMV infection. Here, we show that gamma interferon (IFN-γ)-inducible protein 16 (IFI16), an RF able to block HCMV DNA synthesis, can also counteract HCMV-mediated metabolic reprogramming in infected primary human foreskin fibroblasts (HFFs), thereby limiting virion infectivity. Specifically, we find that IFI16 downregulates the transcriptional activation of the glucose transporter 4 (GLUT4) through cooperation with the carbohydrate-response element-binding protein (ChREBP), thereby reducing HCMV-induced transcription of lipogenic enzymes. The resulting decrease in glucose uptake and consumption leads to diminished lipid synthesis, which ultimately curbs the de novo formation of enveloped viral particles in infected HFFs. Consistently, untargeted lipidomic analysis shows enhanced cholesteryl ester levels in IFI16 KO versus wild-type (WT) HFFs. Overall, our data unveil a new role of IFI16 in the regulation of glucose and lipid metabolism upon HCMV replication and uncover new potential targets for the development of novel antiviral therapies. IMPORTANCE Human cytomegalovirus (HCMV) gathers all the substrates and enzymes necessary for the assembly of new virions from its host cell. For instance, HCMV is known to induce cellular metabolism of infected cells to favor virion assembly. Cells are, however, equipped with a first-line defense represented by restriction factors (RFs), which after sensing viral DNA can trigger innate and adaptive responses, thereby blocking HCMV replication. One such RF is IFN-γ-inducible protein 16 (IFI16), which we have shown to downregulate viral replication in human fibroblasts. Thus, we asked whether IFI16 would also play a role in preserving cellular metabolism upon HCMV infection. Our findings highlight an unprecedented role of IFI16 in opposing the metabolic changes elicited by HCMV, thus revealing new promising targets for antiviral therapy.


Asunto(s)
Reprogramación Celular , Infecciones por Citomegalovirus , Citomegalovirus , Proteínas Nucleares , Fosfoproteínas , Citomegalovirus/fisiología , ADN Viral/genética , Fibroblastos , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Replicación Viral
5.
Antiviral Res ; 200: 105278, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35288208

RESUMEN

The current SARS-CoV-2 pandemic, along with the likelihood that new coronavirus strains will appear in the nearby future, highlights the urgent need to develop new effective antiviral agents. In this scenario, emerging host-targeting antivirals (HTAs), which act on host-cell factors essential for viral replication, are a promising class of antiviral compounds. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, is endowed with a potent inhibitory activity against human beta-coronaviruses (HCoVs). Specifically, we show that infection of human fetal lung fibroblasts with HCoV-OC43 leads to enhanced protein citrullination through transcriptional activation of PAD4, and that inhibition of PAD4-mediated citrullination with either of the two pan-PAD inhibitors Cl-A and BB-Cl or the PAD4-specific inhibitor GSK199 curbs HCoV-OC43 replication. Furthermore, we show that either Cl-A or BB-Cl treatment of African green monkey kidney Vero-E6 cells, a widely used cell system to study beta-CoV replication, potently suppresses HCoV-OC43 and SARS-CoV-2 replication. Overall, our results demonstrate the potential efficacy of PAD inhibitors, in suppressing HCoV infection, which may provide the rationale for the repurposing of this class of inhibitors for the treatment of COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus Humano OC43 , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Humanos , SARS-CoV-2
6.
Nat Commun ; 12(1): 3910, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162877

RESUMEN

Citrullination is the conversion of arginine-to-citrulline by protein arginine deiminases (PADs), whose dysregulation is implicated in the pathogenesis of various types of cancers and autoimmune diseases. Consistent with the ability of human cytomegalovirus (HCMV) to induce post-translational modifications of cellular proteins to gain a survival advantage, we show that HCMV infection of primary human fibroblasts triggers PAD-mediated citrullination of several host proteins, and that this activity promotes viral fitness. Citrullinome analysis reveals significant changes in deimination levels of both cellular and viral proteins, with interferon (IFN)-inducible protein IFIT1 being among the most heavily deiminated one. As genetic depletion of IFIT1 strongly enhances HCMV growth, and in vitro IFIT1 citrullination impairs its ability to bind to 5'-ppp-RNA, we propose that viral-induced IFIT1 citrullination is a mechanism of HCMV evasion from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection.


Asunto(s)
Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Procesamiento Proteico-Postraduccional , Replicación Viral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células Cultivadas , Chlorocebus aethiops , Citrulinación , Citomegalovirus/fisiología , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/virología , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Proteínas de Resistencia a Mixovirus/metabolismo , Desiminasas de la Arginina Proteica/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Vero , Proteínas Virales/metabolismo
7.
Front Immunol ; 12: 532484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897679

RESUMEN

Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating ("aggressive") HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the "aggressive" HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Interferón gamma/inmunología , Células Asesinas Naturales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Citotoxicidad Inmunológica/genética , Citotoxicidad Inmunológica/inmunología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Expresión Génica , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/virología , Ligandos , Masculino , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573337

RESUMEN

Besides smoking and alcohol, human papillomavirus (HPV) is a factor promoting head and neck squamous cell carcinoma (HNSCC). In some human tumors, including HNSCC, a number of mutations are caused by aberrantly activated DNA-modifying enzymes, such as the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) family of cytidine deaminases. As the enzymatic activity of APOBEC proteins contributes to the innate immune response to viruses, including HPV, the role of APOBEC proteins in HPV-driven head and neck carcinogenesis has recently gained increasing attention. Ongoing research efforts take the cue from two key observations: (1) APOBEC expression depends on HPV infection status in HNSCC; and (2) APOBEC activity plays a major role in HPV-positive HNSCC mutagenesis. This review focuses on recent advances on the role of APOBEC proteins in HPV-positive vs. HPV-negative HNSCC.


Asunto(s)
Desaminasas APOBEC/genética , Alphapapillomavirus/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Infecciones por Papillomavirus/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Desaminasas APOBEC/metabolismo , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/virología , Humanos , Inmunidad Innata/genética , Mutagénesis/inmunología , Mutación , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología
9.
PLoS Pathog ; 16(9): e1008855, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986788

RESUMEN

SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/patogenicidad , Infecciones por Herpesviridae/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Antivirales/farmacología , Quinasas Ciclina-Dependientes/metabolismo , Citomegalovirus/genética , Citoplasma/metabolismo , Citoplasma/virología , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosforilación , Replicación Viral/efectos de los fármacos
10.
PLoS Pathog ; 16(9): e1008811, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32903274

RESUMEN

Damage-associated molecular patterns (DAMPs) are endogenous molecules activating the immune system upon release from injured cells. Here we show that the IFI16 protein, once freely released in the extracellular milieu of chronically inflamed tissues, can function as a DAMP either alone or upon binding to lipopolysaccharide (LPS). Specifically, using pull-down and saturation binding experiments, we show that IFI16 binds with high affinity to the lipid A moiety of LPS. Remarkably, IFI16 DAMP activity is potentiated upon binding to subtoxic concentrations of strong TLR4-activating LPS variants, as judged by TLR4-MD2/TIRAP/MyD88-dependent IL-6, IL-8 and TNF-α transcriptional activation and release in stimulated monocytes and renal cells. Consistently, using co-immunoprecipitation (co-IP) and surface plasmon resonance (SPR) approaches, we show that IFI16 is a specific TLR4-ligand and that IFI16/LPS complexes display a faster stimulation turnover on TLR4 than LPS alone. Altogether, our findings point to a novel pathomechanism of inflammation involving the formation of multiple complexes between extracellular IFI16 and subtoxic doses of LPS variants, which then signal through TLR4.


Asunto(s)
Inflamación/inmunología , Neoplasias Renales/inmunología , Leucemia/inmunología , Lipopolisacáridos/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Receptor Toll-Like 4/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Leucemia/metabolismo , Leucemia/patología , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
11.
Microorganisms ; 8(5)2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397638

RESUMEN

The human cytomegalovirus (HCMV) is a widespread pathogen and is associated with severe diseases in immunocompromised individuals. Moreover, HCMV infection is the most frequent cause of congenital malformation in developed countries. Although nucleoside analogs have been successfully employed against HCMV, their use is hampered by the occurrence of serious side effects. There is thus an urgent clinical need for less toxic, but highly effective, antiviral drugs. Strigolactones (SLs) are a novel class of plant hormones with a multifaceted activity. While their role in plant-related fields has been extensively explored, their effects on human cells and their potential applications in medicine are far from being fully exploited. In particular, their antiviral activity has never been investigated. In the present study, a panel of SL analogs has been assessed for antiviral activity against HCMV. We demonstrate that TH-EGO and EDOT-EGO significantly inhibit HCMV replication in vitro, impairing late protein expression. Moreover, we show that the SL-dependent induction of apoptosis in HCMV-infected cells is a contributing mechanism to SL antiviral properties. Overall, our results indicate that SLs may be a promising alternative to nucleoside analogs for the treatment of HCMV infections.

12.
PLoS Pathog ; 16(5): e1008476, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32384127

RESUMEN

Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes.


Asunto(s)
Adaptación Biológica/genética , Infecciones por Citomegalovirus/genética , Citomegalovirus/genética , Adaptación Fisiológica/genética , Animales , Evolución Biológica , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/metabolismo , Evolución Molecular , Glicoproteínas/metabolismo , Interacciones Microbiota-Huesped/genética , Humanos , Filogenia , Especificidad de la Especie , Proteínas Virales/metabolismo
13.
J Virol ; 94(4)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31776268

RESUMEN

Subversion of innate immunity by oncoviruses, such as human papillomavirus (HPV), favors carcinogenesis because the mechanism(s) of viral immune evasion can also hamper cancer immunosurveillance. Previously, we demonstrated that high-risk (hr) HPVs trigger simultaneous epigenetic silencing of multiple effectors of innate immunity to promote viral persistence. Here, we expand on those observations and show that the HPV E7 oncoprotein upregulates the H3K9-specific methyltransferase, whose action shuts down the host innate immune response. Specifically, we demonstrate that SUV39H1 contributes to chromatin repression at the promoter regions of the viral nucleic acid sensors RIG-I and cGAS and the adaptor molecule STING in HPV-transformed cells. Inhibition of SUV39H1 leads to transcriptional activation of these genes, especially RIG-I, followed by increased beta interferon (IFN-ß) and IFN-λ1 production after poly(dA·dT) or RIG-I agonist M8 transfection. Collectively, our findings provide new evidence that the E7 oncoprotein plays a central role in dampening host innate immunity and raise the possibility that targeting the downstream effector SUV39H1 or the RIG-I pathway is a viable strategy to treat viral and neoplastic disease.IMPORTANCE High-risk HPVs are major viral human carcinogens responsible for approximately 5% of all human cancers. The growth of HPV-transformed cells depends on the ability of viral oncoproteins to manipulate a variety of cellular circuits, including those involved in innate immunity. Here, we show that one of these strategies relies on E7-mediated transcriptional activation of the chromatin repressor SUV39H1, which then promotes epigenetic silencing of RIG-I, cGAS, and STING genes, thereby shutting down interferon secretion in HPV-transformed cells. Pharmacological or genetic inhibition of SUV39H1 restored the innate response in HPV-transformed cells, mostly through activation of RIG-I signaling. We also show that IFN production upon transfection of poly(dA·dT) or the RIG-I agonist M8 predominantly occurs through RIG-I signaling. Altogether, the reversible nature of the modifications associated with E7-mediated SUV39H1 upregulation provides a rationale for the design of novel anticancer and antiviral therapies targeting these molecules.


Asunto(s)
Metiltransferasas/metabolismo , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Represoras/metabolismo , Línea Celular , Proteína 58 DEAD Box/metabolismo , Epigénesis Genética/genética , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferón beta/metabolismo , Queratinocitos/virología , Proteínas de la Membrana/metabolismo , Metiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/patogenicidad , Proteínas E7 de Papillomavirus/fisiología , Infecciones por Papillomavirus/virología , Receptores Inmunológicos , Proteínas Represoras/genética , Transducción de Señal/genética , Activación Transcripcional/genética
14.
Microorganisms ; 8(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861809

RESUMEN

In the last decades, the human papillomavirus (HPV) emerged as an etiological cause of head and neck squamous cell carcinoma (HNSCC), especially in the oropharynx. The role of two intracellular DNA sensors, which belong to the PYHIN family (interferon-inducible protein 16 (IFI16) and absent in melanoma 2 protein (AIM2)), has been analyzed in relation to HPV infection and head and neck carcinogenesis. In particular, IFI16 and AIM2 expression depends on HPV infection in HNSCC. They represent viral restriction factors and are key components of the intrinsic immunity activated against different viruses, including HPV. This review analyzed and summarized the recent findings about the role of PYHIN proteins in HPV+ and HPV- HNSCC.

15.
Heliyon ; 5(11): e02643, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31840115

RESUMEN

IFI16, member of the IFN-inducible PYHIN-200 gene family, modulates proliferation, survival and differentiation of different cell lineages. In particular, IFI16 expression, which is regulated during the differentiation of B cells, was recently studied in B-CLL as well. Here, we compared IFI16 expression in several lymphomas including Burkitt lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, marginal zone lymphoma and mantle cell lymphoma with respect to normal cell counterparts. We observed that IFI16 expression was significantly deregulated only in mantle cell lymphoma (p < 0.05). Notably, IFI16 was associated with the expression of genes involved in interferon response, cell cycle, cell death and proliferation and, interestingly, lipid and glucose metabolism, suggesting that IFI16 deregulation might be associated with relevant changes in cell biology. In our group of mantle cell lymphoma samples a correlation between patient survival and IFI16 expression was not detected even though mantle cell lymphoma prognosis is known to be associated with cell proliferation. Altogether, these results suggest a complex relationship between IFI16 expression and MCL which needs to be analyzed in further studies.

16.
Mol Biol Rep ; 46(3): 3333-3347, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30980272

RESUMEN

The aim of the present study is to determine the expression levels of PYHIN (IFI16 and AIM2) and APOBEC3 (A3A, A3B, A3C, A3D, A3F, A3G, and A3H) gene family members in a cohort of patients with head and neck squamous cell carcinoma (HNSCC) and assess their potential correlation with human papillomavirus (HPV) infection status, clinical characteristics, and survival. For this purpose, 34 HNSCC tissue specimens along with healthy surrounding mucosa were collected from patients surgically treated for HNSCC. Nucleic acids were isolated to assess the presence of HPV and the expression levels of selected molecular markers. Survival analysis was carried out using the Kaplan-Meier method. In HPV-negative (HPV-) HNSCCs, we detected low mRNA expression levels of IFI16, A3A, and A3B, whereas these genes were upregulated of 2-100 folds in HPV-positive (HPV+) tumors (p < 0.05). Interestingly, AIM2 gene expression levels were predominantly unchanged in HPV+ HNSCCs compared to their HPV- counterparts, in which AIM2 was predominantly upregulated (10% vs. 50% of patients). In HPV- tumors, upregulation of TP53, NOTCH1, PD-L1, and IFI16 correlated with lower occurrence of nodal metastases. On the other hand, the expression of APOBEC family members did not correlate with clinical characteristics. Regarding survival, patients with upregulated A3F gene expression had a worse prognosis, while patients without changes in A3H expression had a lower survival rate. In conclusion, our findings indicate that the innate immune sensors IFI16 and AIM2 and some APOBEC family members could be potentially used as biomarkers for disease outcome in HNSCC patients regardless of HPV presence.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/virología , Proteínas Nucleares/genética , Papillomaviridae/aislamiento & purificación , Fosfoproteínas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Desaminasas APOBEC , Adulto , Anciano , Biomarcadores de Tumor/genética , Estudios de Cohortes , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN Viral/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas Nucleares/metabolismo , Papillomaviridae/genética , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Fosfoproteínas/metabolismo , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Análisis de Supervivencia
17.
Viruses ; 10(10)2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332797

RESUMEN

Interleukin-1ß (IL-1ß) is a key effector of the inflammasome complex in response to pathogens and danger signals. Although it is well known that assembly of the inflammasome triggers proteolytic cleavage of the biologically inactive precursor pro-IL-1ß into its mature secreted form, the mechanism by which human cytomegalovirus (HCMV) regulates IL-1ß production via the inflammasome is still poorly understood. Here, we show that the infection of human foreskin fibroblasts (HFFs) with a mutant HCMV lacking the tegument protein pp65 (v65Stop) results in higher expression levels of mature IL-1ß compared to its wild-type counterpart, suggesting that pp65 mediates HCMV immune evasion through downmodulation of IL-1ß. Furthermore, we show that enhanced IL-1ß production by the v65Stop mutant is due in part to induction of DNA binding and the transcriptional activity of NF-κB. Lastly, we demonstrate that HCMV infection of HFFs triggers a non-canonical IL-1ß activation pathway where caspase-8 promotes IL-1ß maturation independently of caspase-1. Altogether, our findings provide novel mechanistic insights into the interplay between HCMV and the inflammasome system and raise the possibility of targeting pp65 to treat HCMV infection.


Asunto(s)
Infecciones por Citomegalovirus/genética , Citomegalovirus/inmunología , Interleucina-1beta/genética , FN-kappa B/genética , Fosfoproteínas/inmunología , Proteínas de la Matriz Viral/inmunología , Línea Celular , Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/fisiopatología , Infecciones por Citomegalovirus/virología , Fibroblastos/inmunología , Fibroblastos/virología , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Interleucina-1beta/inmunología , FN-kappa B/metabolismo , Fosfoproteínas/genética , Regulación hacia Arriba , Proteínas de la Matriz Viral/genética
18.
J Clin Virol ; 108: 132-140, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30312910

RESUMEN

BACKGROUND: Human cytomegalovirus (HCMV) is the leading cause of congenital infections resulting in severe morbidity and mortality among infected children. Although the virus is highly polymorphic, particularly in genes contributing to immune evasion, the mechanisms underlying its genetic variability and pathogenicity are only partially understood. OBJECTIVES: We aimed to characterize different HCMV clinical strains isolated from 21 congenitally- or postnatally-infected children for in vitro growth properties and genetic polymorphisms. STUDY DESIGN: The growth of various HCMV isolates was analyzed in different cell culture models. Genetic polymorphism was assessed by genetic and phylogenetic analysis of viral genes involved in virulence (UL144, US28, and UL18), latency (UL133-138), or drug resistance (UL54 and UL97). RESULTS: Here, we report a high degree of genetic and phenotypic diversity in distinct HCMV clinical isolates, as shown by their in vitro growth properties. In particular, HCMV isolates displayed the highest degree of genetic variability in the UL144 gene, where we were able to define four distinct genotypes within the cohort based on UL144 heterogeneity. Lastly, among all isolates we were able to identify 36 mutations in UL54 and 2 in UL97. CONCLUSIONS: Our findings indicate that surprisingly high levels of genetic HCMV variability correlate with a high degree of phenotypic polymorphism, which in turn might differentially influence the growth, fitness, and drug susceptibility of HCMV.


Asunto(s)
Infecciones por Citomegalovirus/congénito , Infecciones por Citomegalovirus/virología , Citomegalovirus/genética , Variación Genética , Genotipo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/transmisión , Humanos , Lactante , Recién Nacido , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Mutación , Fenotipo , Tropismo Viral , Factores de Virulencia/genética , Latencia del Virus/genética , Replicación Viral
19.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045985

RESUMEN

The apolipoprotein B editing enzyme catalytic subunit 3 (APOBEC3) is a family of DNA cytosine deaminases that mutate and inactivate viral genomes by single-strand DNA editing, thus providing an innate immune response against a wide range of DNA and RNA viruses. In particular, APOBEC3A (A3A), a member of the APOBEC3 family, is induced by human cytomegalovirus (HCMV) in decidual tissues where it efficiently restricts HCMV replication, thereby acting as an intrinsic innate immune effector at the maternal-fetal interface. However, the widespread incidence of congenital HCMV infection implies that HCMV has evolved to counteract APOBEC3-induced mutagenesis through mechanisms that still remain to be fully established. Here, we have assessed gene expression and deaminase activity of various APOBEC3 gene family members in HCMV-infected primary human foreskin fibroblasts (HFFs). Specifically, we show that APOBEC3G (A3G) gene products and, to a lesser degree, those of A3F but not of A3A, are upregulated in HCMV-infected HFFs. We also show that HCMV-mediated induction of A3G expression is mediated by interferon beta (IFN-ß), which is produced early during HCMV infection. However, knockout or overexpression of A3G does not affect HCMV replication, indicating that A3G is not a restriction factor for HCMV. Finally, through a bioinformatics approach, we show that HCMV has evolved mutational robustness against IFN-ß by limiting the presence of A3G hot spots in essential open reading frames (ORFs) of its genome. Overall, our findings uncover a novel immune evasion strategy by HCMV with profound implications for HCMV infections.IMPORTANCE APOBEC3 family of proteins plays a pivotal role in intrinsic immunity defense mechanisms against multiple viral infections, including retroviruses, through the deamination activity. However, the currently available data on APOBEC3 editing mechanisms upon HCMV infection remain unclear. In the present study, we show that particularly the APOBEC3G (A3G) member of the deaminase family is strongly induced upon infection with HCMV in fibroblasts and that its upregulation is mediated by IFN-ß. Furthermore, we were able to demonstrate that neither A3G knockout nor A3G overexpression appears to modulate HCMV replication, indicating that A3G does not inhibit HCMV replication. This may be explained by HCMV escape strategy from A3G activity through depletion of the preferred nucleotide motifs (hot spots) from its genome. The results may shed light on antiviral potential of APOBEC3 activity during HCMV infection, as well as the viral counteracting mechanisms under A3G-mediated selective pressure.


Asunto(s)
Desaminasa APOBEC-3G/genética , Citomegalovirus/genética , Genoma Viral , Evasión Inmune , Interferón beta/genética , Desaminasa APOBEC-3G/inmunología , Sistemas CRISPR-Cas , Línea Celular , Biología Computacional , Citomegalovirus/inmunología , Células Epiteliales/inmunología , Células Epiteliales/virología , Fibroblastos/inmunología , Fibroblastos/virología , Prepucio/citología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/virología , Humanos , Inmunidad Innata , Interferón beta/inmunología , Masculino , Mutagénesis , Sistemas de Lectura Abierta , Cultivo Primario de Células , Transducción de Señal , Células THP-1 , Replicación Viral
20.
Infect Genet Evol ; 64: 105-114, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29935337

RESUMEN

The interplay between human cytomegalovirus (HCMV) and the innate immune response is a critical process that has attracted the attention of many research groups. The emerging scenario is that the immune response of an HCMV-infected host is mediated by a plethora of viral DNA sensors acting as pattern recognition receptors (PRRs), which are capable of inhibiting indirectly viral infection through the activation of two distinct downstream signaling cascades. The first one triggers the production of cytokines, chemokines and interferons (IFNs), while the second one leads to inflammasome complex formation, which in turn promotes the maturation and secretion of pro-inflammatory cytokines such as interleukin-1ß (IL-1ß). An additional first line of defense against HCMV is represented by a multiplicity of constitutively expressed restriction factors that inhibit viral replication by directly interfering with the activity of essential viral/cellular genes. Here, we take a closer look at some of the most representative intrinsic restriction factors involved in HCMV infection (e.g. IFI16, ND10 complex, viperin and APOBEC3) and review our current understanding of the mechanisms that HCMV has evolved to counteract both IFN and inflammasome responses.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Inmunomodulación , Animales , Citocinas/metabolismo , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , ADN Viral/inmunología , Resistencia a la Enfermedad/inmunología , Humanos , Inflamasomas/metabolismo , Interferones/metabolismo , Transducción de Señal , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA