Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38915901

RESUMEN

Tissue chips have become one of the most potent research tools in the biomedical field. In contrast to conventional research methods, such as 2D cell culture and animal models, tissue chips more directly represent human physiological systems. This allows researchers to study therapeutic outcomes to a high degree of similarity to actual human subjects. Additionally, as rocket technology has advanced and become more accessible, researchers are using the unique properties offered by microgravity to meet specific challenges of modeling tissues on Earth; these include large organoids with sophisticated structures and models to better study aging and disease. This perspective explores the manufacturing and research applications of microgravity tissue chip technology, specifically investigating the musculoskeletal, cardiovascular, and nervous systems.

2.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559052

RESUMEN

In-space manufacturing of nanomaterials is a promising concept while having limited successful examples. DNA-inspired Janus base nanomaterials (JBNs), used for therapeutics delivery and tissue regeneration, are fabricated via a controlled self-assembly process in water at ambient temperature, making them highly suitable for in-space manufacturing. For the first time, we designed and accomplished the production of JBNs on orbit during the Axiom-2 (Ax-2) mission demonstrating great promising and benefits of in-space manufacturing of nanomaterials.

3.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328235

RESUMEN

Despite the development of various drug delivery technologies, there remains a significant need for vehicles that can improve targeting and biodistribution in "hard-to-penetrate" tissues. Some solid tumors, for example, are particularly challenging to penetrate due to their dense extracellular matrix (ECM). In this study, we have formulated a new family of rod-shaped delivery vehicles named Janus base nanopieces (Rod JBNps), which are more slender than conventional spherical nanoparticles, such as lipid nanoparticles (LNPs). These JBNp nanorods are formed by bundles of DNA-inspired Janus base nanotubes (JBNts) with intercalated delivery cargoes. To develop this novel family of delivery vehicles, we employed a computation-aided design (CAD) methodology that includes molecular dynamics and response surface methodology. This approach precisely and efficiently guides experimental designs. Using an ovarian cancer model, we demonstrated that JBNps markedly improve penetration into the dense ECM of solid tumors, leading to better treatment outcomes compared to FDA-approved spherical LNP delivery. This study not only successfully developed a rod-shaped delivery vehicle for improved tissue penetration but also established a CAD methodology to effectively guide material design.

4.
J Vis Exp ; (185)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35876554

RESUMEN

Various biomaterial scaffolds have been developed to guide cell adhesion and proliferation in hopes to promote specific functions for in vitro and in vivo uses. The addition of growth factors into these biomaterial scaffolds is generally done to provide an optimal cell culture environment, mediating cell differentiation and its subsequent functions. However, the growth factors in a conventional biomaterial scaffold are typically designed to be released upon implantation, which could result in unintended side effects on surrounding tissue or cells. Here, the DNA-inspired Janus base nano-matrix (JBNm) has successfully achieved a highly localized microenvironment with a layer-by-layer structure for self-sustainable cartilage tissue constructs. JBNms are self-assembled from Janus base nanotubes (JBNts), matrilin-3, and transforming growth factor beta-1 (TGF-ß1) via bioaffinity. The JBNm was assembled at a TGF-ß1:matrilin-3:JBNt ratio of 1:4:10, as this has been the determined ratio at which proper assembly into the layer-by-layer structure could occur. First, the TGF-ß1 solution was added to the matrilin-3 solution. Then, this mixture was pipetted several times to ensure sufficient homogeneity before the addition of the JBNt solution. This formed the layer-by-layer JBNm, after pipetting several times again. A variety of experiments were performed to characterize the layer-by-layer JBNm structure, JBNts alone, matrilin-3 alone, and TGF-ß1 alone. The formation of JBNm was studied with UV-Vis absorption spectra, and the structure of the JBNm was observed with transmission electron microscopy (TEM). As the innovative layer-by-layer JBNm scaffold is formed on a molecular scale, the fluorescent dye-labeled JBNm could be observed. The TGF-ß1 is confined within the inner layer of the injectable JBNm, which can prevent the release of growth factors to surrounding areas, promote localized chondrogenesis, and promote an anti-hypertrophic microenvironment.


Asunto(s)
Cartílago , Factor de Crecimiento Transformador beta1 , Materiales Biocompatibles , Cartílago/metabolismo , Condrogénesis , Proteínas Matrilinas/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA