Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Cycle ; 18(20): 2697-2712, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31462142

RESUMEN

Continuous, non-cell cycle-dependent expression of cyclin E is a characteristic feature of mouse embryonic stem cells (mESCs). We studied the 5' regulatory region of Cyclin E, also known as Ccne1, and identified binding sites for transcription factors of the naïve pluripotency network, including Esrrb, Klf4, and Tfcp2l1 within 1 kilobase upstream of the transcription start site. Luciferase assay and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChiP-qPCR) study highlighted one binding site for Esrrb that is essential to transcriptional activity of the promoter region, and three binding sites for Klf4 and Tfcp2l1. Knockdown of Esrrb, Klf4, and Tfcp2l1 reduced Cyclin E expression whereas overexpression of Esrrb and Klf4 increased it, indicating a strong correlation between the expression level of these factors and that of cyclin E. We observed that cyclin E overexpression delays differentiation induced by Esrrb depletion, suggesting that cyclin E is an important target of Esrrb for differentiation blockade. We observed that mESCs express a low level of miR-15a and that transfection of a miR-15a mimic decreases Cyclin E mRNA level. These results lead to the conclusion that the high expression level of Cyclin E in mESCs can be attributed to transcriptional activation by Esrrb as well as to the absence of its negative regulator, miR-15a.


Asunto(s)
Diferenciación Celular/genética , Ciclina E/metabolismo , Ciclinas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , Animales , Sitios de Unión , Línea Celular , Inmunoprecipitación de Cromatina , Ciclina E/genética , Ciclinas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
2.
Nat Commun ; 7: 11063, 2016 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-27026076

RESUMEN

TAF4 (TATA-binding protein-associated factor 4) and its paralogue TAF4b are components of the TFIID core module. We inactivated the murine Taf4a gene to address Taf4 function during embryogenesis. Here we show that Taf4a(-/-) embryos survive until E9.5 where primary germ layers and many embryonic structures are identified showing Taf4 is dispensable for their specification. In contrast, Taf4 is required for correct patterning of the trunk and anterior structures, ventral morphogenesis and proper heart positioning. Overlapping expression of Taf4a and Taf4b during embryogenesis suggests their redundancy at early stages. In agreement with this, Taf4a(-/-) embryonic stem cells (ESCs) are viable and comprise Taf4b-containing TFIID. Nevertheless, Taf4a(-/-) ESCs do not complete differentiation into glutamatergic neurons and cardiomyocytes in vitro due to impaired preinitiation complex formation at the promoters of critical differentiation genes. We define an essential role of a core TFIID TAF in differentiation events during mammalian embryogenesis.


Asunto(s)
Diferenciación Celular , Desarrollo Embrionario , Células Madre Embrionarias de Ratones/metabolismo , Subunidades de Proteína/metabolismo , Factor de Transcripción TFIID/metabolismo , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/genética , Anomalías Cardiovasculares/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Supervivencia Celular/efectos de los fármacos , Pérdida del Embrión/genética , Pérdida del Embrión/patología , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/efectos de los fármacos , Mutación , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Cresta Neural/efectos de los fármacos , Cresta Neural/patología , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fenotipo , Embarazo , Subunidades de Proteína/genética , Factor de Transcripción TFIID/deficiencia , Factor de Transcripción TFIID/genética , Tretinoina/farmacología
3.
J Cell Sci ; 128(13): 2303-18, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25991548

RESUMEN

Mouse embryonic stem cells (ESCs) treated with all-trans retinoic acid differentiate into a homogenous population of glutamatergic neurons. Although differentiation is initiated through activation of target genes by the retinoic acid receptors, the downstream transcription factors specifying neuronal fate are less well characterised. Here, we show that the transcription factor Brn2 (also known as Pou3f2) is essential for the neuronal differentiation programme. By integrating results from RNA-seq following Brn2 silencing with results from Brn2 ChIP-seq, we identify a set of Brn2 target genes required for the neurogenic programme. Further integration of Brn2 ChIP-seq data from retinoic-acid-treated ESCs and P19 cells with data from ESCs differentiated into neuronal precursors by Fgf2 treatment and that from fibroblasts trans-differentiated into neurons by ectopic Brn2 expression showed that Brn2 occupied a distinct but overlapping set of genomic loci in these differing conditions. However, a set of common binding sites and target genes defined the core of the Brn2-regulated neuronal programme, among which was that encoding the transcription factor Zic1. Small hairpin RNA (shRNA)-mediated silencing of Zic1 prevented ESCs from differentiating into neuronal precursors, thus defining a hierarchical Brn2-Zic1 axis that is essential to specify neural fate in retinoic-acid-treated ESCs.


Asunto(s)
Linaje de la Célula/efectos de los fármacos , Células Madre Embrionarias de Ratones/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Factores del Dominio POU/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/farmacología , Animales , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Cuerpos Embrioides/citología , Cuerpos Embrioides/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genoma , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo
4.
Elife ; 3: e03613, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25209997

RESUMEN

The functions of the TAF subunits of mammalian TFIID in physiological processes remain poorly characterised. In this study, we describe a novel function of TAFs in directing genomic occupancy of a transcriptional activator. Using liver-specific inactivation in mice, we show that the TAF4 subunit of TFIID is required for post-natal hepatocyte maturation. TAF4 promotes pre-initiation complex (PIC) formation at post-natal expressed liver function genes and down-regulates a subset of embryonic expressed genes by increased RNA polymerase II pausing. The TAF4-TAF12 heterodimer interacts directly with HNF4A and in vivo TAF4 is necessary to maintain HNF4A-directed embryonic gene expression at post-natal stages and promotes HNF4A occupancy of functional cis-regulatory elements adjacent to the transcription start sites of post-natal expressed genes. Stable HNF4A occupancy of these regulatory elements requires TAF4-dependent PIC formation highlighting that these are mutually dependent events. Local promoter-proximal HNF4A-TFIID interactions therefore act as instructive signals for post-natal hepatocyte differentiation.


Asunto(s)
Diferenciación Celular/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Regiones Promotoras Genéticas , Subunidades de Proteína/metabolismo , Factor de Transcripción TFIID/metabolismo , Animales , Animales Recién Nacidos , Conductos Biliares/metabolismo , Conductos Biliares/patología , Comunicación Celular , Colestasis/complicaciones , Colestasis/metabolismo , Colestasis/patología , Regulación hacia Abajo/genética , Genoma , Factor Nuclear 4 del Hepatocito/química , Proteínas de Homeodominio/metabolismo , Hipoglucemia/complicaciones , Hipoglucemia/patología , Ratones , Mutación/genética , Unión Proteica/genética , Multimerización de Proteína , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo , Factores Asociados con la Proteína de Unión a TATA , Proteína de Unión a TATA-Box/metabolismo , Factor de Transcripción TFIID/deficiencia , Regulación hacia Arriba/genética
5.
Mol Cell ; 51(2): 174-84, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23870143

RESUMEN

Dosage compensation in Drosophila involves a global activation of genes on the male X chromosome. The activating complex (MSL-DCC) consists of male-specific-lethal (MSL) proteins and two long, noncoding roX RNAs. The roX RNAs are essential for X-chromosomal targeting, but their contributions to MSL-DCC structure and function are enigmatic. Conceivably, the RNA helicase MLE, itself an MSL subunit, is actively involved in incorporating roX into functional DCC. We determined the secondary structure of roX2 and mapped specific interaction sites for MLE in vitro. Upon addition of ATP, MLE disrupted a functionally important stem loop in roX2. This RNA remodeling enhanced specific ATP-dependent association of MSL2, the core subunit of the MSL-DCC, providing a link between roX and MSL subunits. Probing the conformation of roX in vivo revealed a remodeled stem loop in chromatin-bound roX2. The active remodeling of a stable secondary structure by MLE may constitute a rate-limiting step for MSL-DCC assembly.


Asunto(s)
Adenosina Trifosfato/farmacología , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/genética , ARN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromosoma X/genética , Animales , Animales Modificados Genéticamente , Emparejamiento Base , Western Blotting , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Genes DCC/genética , Inmunoprecipitación , Masculino , Mutación/genética , Conformación de Ácido Nucleico , ARN/química , ARN/metabolismo , ARN Helicasas/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/química , Transcripción Genética , Cromosoma X/metabolismo
6.
J Biol Chem ; 287(31): 26328-41, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22661711

RESUMEN

Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function.


Asunto(s)
Receptores de Ácido Retinoico/metabolismo , Elementos de Respuesta , Receptores X Retinoide/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Células Cultivadas , Inmunoprecipitación de Cromatina , Técnicas de Cocultivo , Secuencia de Consenso , Ensayo de Cambio de Movilidad Electroforética , Cuerpos Embrioides/metabolismo , Genoma , Ratones , Unión Proteica , Receptores de Ácido Retinoico/química , Secuencias Repetitivas de Ácidos Nucleicos , Receptores X Retinoide/química , Análisis de Secuencia de ADN , Volumetría , Transcripción Genética
7.
J Cell Sci ; 121(Pt 9): 1403-14, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18398000

RESUMEN

The adaptor protein Miranda plays a pivotal role in the asymmetric cell division of neuroblasts by asymmetrically segregating key differentiation factors. Miranda localization requires Myosin VI and Myosin II. The apical-then-basal localization pattern of Miranda detected in fixed tissue, and the localization defects in embryos lacking Myosin VI, suggest that Miranda is transported to the basal pole as a Myosin VI cargo. However, the mode and temporal sequence of Miranda localization have not been characterized in live embryos. Furthermore, it is unknown whether Miranda and PON, a second adaptor protein required for asymmetric protein localization, are both regulated by Myosin II. By combining immunofluorescence studies with time-lapse confocal microscopy, we show that Miranda protein forms an apical crescent at interphase, but is ubiquitously localized at prophase in a Myosin-II-dependent manner. FRAP analysis revealed that Miranda protein reaches the basal cortex by passive diffusion throughout the cell, rather than by long-range Myosin VI-directed transport. Myosin VI acts downstream of Myosin II in the same pathway to deliver diffusing Miranda to the basal cortex. PON localization occurs mainly along the cortex and requires Myosin II but not Myosin VI, suggesting that distinct mechanisms are employed to localize different adaptor proteins during asymmetric cell division.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Neuronas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Difusión , Drosophila melanogaster/citología , Mitosis , Modelos Biológicos , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA