Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Carbohydr Polym ; 339: 122243, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823912

RESUMEN

Pilling is a form of textile mechanical damage, forming fibrous bobbles on the surface of garments, resulting in premature disposal of clothing by consumers. However, our understanding on how the structural properties of the cellulosic matrix compliment the three-dimensional shape of cotton pills remains limited. This knowledge gap has hindered the development of effective 'pillase' technologies over the past 20 years due to challenges in balancing depilling efficacy with fabric integrity preservation. Therefore, the main focus here was characterising the role of cellulose and the hemicellulose components in cotton textiles to elucidate subtle differences between the chemistry of pills and fibre regions involved in structural integrity. State-of-the-art bioimaging using carbohydrate binding modules, monoclonal antibodies, and Leica SP8 and a Nikon A1R confocal microscopes, revealed the biophysical structure of cotton pills for the first time. Identifying regions of increased crystalline cellulose in the base of anchor fibres and weaker amorphous cellulose at dislocations in their centres, enhancing our understanding of current enzyme specificity. Surprisingly, pills contained a 7-fold increase in the concentration of xyloglucan compared to the main textile. Therefore, xyloglucan offers a previously undescribed target for overcoming this benefit-to-risk paradigm, suggesting a role for xyloglucanase enzymes in future pillase systems.


Asunto(s)
Celulosa , Fibra de Algodón , Glucanos , Xilanos , Celulosa/química , Fibra de Algodón/análisis , Xilanos/química , Xilanos/metabolismo , Glucanos/química , Cristalización , Textiles , Polisacáridos/química
2.
PLoS One ; 18(5): e0285548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37224145

RESUMEN

Laundering of textiles is a significant source of waterborne microfiber pollution, and solutions are now being sought to mitigate this issue including improvements in clothing technology and integration of filtration systems into washing machines. Vented tumble dryers are a potential source of airborne microfiber pollution, as their built-in lint filtration systems have been found to be inefficient with significant quantities of textile microfibers being released to the external environment through their exhaust air ducts. The present study is the first to evaluate the impact of condenser dryers, finding that they are significant contributors to waterborne microfiber pollution from the lint filter (if users clean this with water), the condenser and the condensed water. Microfiber release from drying of real consumer loads in condenser and vented tumble dryers was compared, finding that real loads release surprisingly high levels of microfibers (total 341.5 ± 126.0 ppm for those dried in a condenser dryer and 256.0 ± 74.2 ppm for those dried in a vented dryer), similar in quantity to microfibers produced during the first highly-shedding drying cycle of a new T-shirt load (total 321.4 ± 11.2 ppm) in a condenser dryer. Vented dryers were found to be significant contributors to waterborne microfiber pollution if consumers clean the lint filter with water in accordance with some published appliance usage instructions, as most (86.1 ± 5.5% for the real consumer loads tested) of the microfibers generated during vented tumble drying were collected on the lint filter. Therefore, tumble dryers are a significant source of waterborne and (for vented dryers) airborne microfiber pollution. While reducing the pore size of tumble dryer lint filters and instructing consumers to dispose of fibers collected on lint filters as municipal solid waste could help reduce the issue, more sophisticated engineering solutions will likely be required to achieve a more comprehensive solution.


Asunto(s)
Desecación , Contaminación Ambiental , Ingeniería , Residuos Sólidos , Agua
3.
Food Chem ; 410: 135379, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621331

RESUMEN

Burning of food materials during cooking can increase the difficulty in removal from solid surfaces, forming residual food soils. Using molecular probe-based technologies, the aim of this work was to elucidate the composition and relative abundance of glycans within a Burnt-On/Baked-On (BoBo) model food soil and investigate enzyme systems that may facilitate soil breakdown. Microarray Polymer Profiling identified xylan, arabinoxylan, mixed-linkage glucan and mannan as target substrates for the enzymatic cleaning of BoBo residues from surfaces. Indirect immunofluorescence microscopy revealed that burning resulted in extensive structural modifications and degradation of the three-dimensional architecture of constituent polysaccharide matrices. Results from high-throughput enzyme screening indicate that inclusion of xylan depolymerising enzymes in automatic dishwashing detergents may improve cleaning of recalcitrant, plant glycan-rich BoBo soils. Collectively, this study provides new insight into the composition and removal chemistry of complex, multi-component food soils.


Asunto(s)
Polímeros , Xilanos , Xilanos/metabolismo , Suelo , Polisacáridos/química , Análisis por Micromatrices/métodos , Microscopía Fluorescente
4.
PLoS One ; 17(4): e0265912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35385503

RESUMEN

Vented tumble dryers release moist warm air from the drying process to the external environment, usually through pipework linking the appliance to a vent in an exterior wall. Although such dryers contain a lint filter to remove fibers from this air stream, recent reports suggest that this process is incomplete, leading to microfibers being released in the ducted warm air and subsequently polluting the external environment. Microfiber release from wash loads comprising 10 100% cotton and 10 100% polyester T-shirts (total load mass ratio 48% cotton, 52% polyester) was measured at different stages of the washing and drying process to compare the quantities of fibers released 'down the drain', collected in the dryer lint filter, and released to air from the tumble dryer. Testing under both European and North American washing conditions found that the quantities of microfibers released to air during tumble drying were significant and comparable to levels released 'down the drain' during washing. Use of conventional rinse-added liquid fabric conditioner increased microfiber accumulation on the dryer lint filter, with reduced release from the dryer exhaust observed at the highest fabric conditioner dose tested (21.6% and 14.2% reduction under North American and European conditions, respectively). Conventional liquid fabric conditioner did not significantly impact microfiber release from the washing machine, in line with previous studies. A fabric conditioner specially designed for anti-wrinkle performance reduced microfiber release from the dryer exhaust at all levels tested (by 17.6-35.6%, depending on dose), apparently by increasing the efficiency of microfiber accumulation in the lint filter. Tumble dryer sheets were also found to cause a reduction in microfiber release from the dryer exhaust (by 14.1-34.9%, depending on the dose/product), likely driven by collection of liberated fibers on the sheet during the drying process. The use of both antiwrinkle liquid fabric conditioner and dryer sheet enabled a 44.9% reduction in microfiber emissions from the dryer exhaust. In all studies, the fiber mass collected on the lint filter or emitted from the dryer exhaust was richer in cotton fibers (range 83.4-96.3% on the lint filter, 93.0-99.8% from the dryer exhaust) than the wash load composition (48% cotton). Moreover, fibers collected by the lint filter contained a higher proportion of polyester than emissions from the dryer exhaust (range 3.7-16.6% on the lint filter, 0.2-7.0% from the dryer exhaust). There is significant variation in the porosity of lint filters among installed vented tumble dryers. Single-variable testing of the impact of lint filter design concluded that reducing screen pore size significantly reduces airborne microfiber release during tumble drying; a reduction in lint filter pore size from 0.2 mm2 to 0.04 mm2 reduced release by 34.8%. As some lint filters have pore sizes of around 1 mm2, there is enormous scope to reduce microfiber release from dryers though improved lint filter design. However, it is suggested that a step-change in appliance design away from vented dryers to only fully-sealed condenser dryers might be necessary to eliminate the contribution of tumble drying to airborne microfiber pollution.


Asunto(s)
Lavandería , Plásticos , Poliésteres , Textiles , Residuos
5.
Sci Rep ; 11(1): 21542, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728780

RESUMEN

Washed textiles can remain malodorous and dingy due to the recalcitrance of soils. Recent work has found that 'invisible' soils such as microbial extracellular DNA (eDNA) play a key role in the adhesion of extracellular polymeric substances that form matrixes contributing to these undesirable characteristics. Here we report the application of an immunostaining method to illustrate the cleaning mechanism of a nuclease (DNase I) acting upon eDNA. Extending previous work that established a key role for eDNA in anchoring these soil matrixes, this work provides new insights into the presence and effective removal of eDNA deposited on fabrics using high-resolution in-situ imaging. Using a monoclonal antibody specific to Z-DNA, we showed that when fabrics are washed with DNase I, the incidence of microbial eDNA is reduced. As well as a quantitative reduction in microbial eDNA, the deep cleaning benefits of this enzyme are shown using confocal microscopy and imaging analysis of T-shirt fibers. To the best of our knowledge, this is the first time the use of a molecular probe has been leveraged for fabric and homecare-related R&D to visualize eDNA and evaluate its removal from textiles by a new-to-laundry DNase enzyme. The approaches described in the current work also have scope for re-application to identify further cleaning technology.


Asunto(s)
Bacterias/metabolismo , Adhesión Bacteriana , ADN Bacteriano/aislamiento & purificación , Desoxirribonucleasa I/metabolismo , Vesículas Extracelulares/metabolismo , Imagen Molecular/métodos , Textiles/análisis , ADN Bacteriano/metabolismo , Textiles/microbiología
6.
PLoS One ; 15(6): e0233332, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32502152

RESUMEN

Fiber release during domestic textile washing is a cause of marine microplastic pollution, but better understanding of the magnitude of the issue and role of fabric care products, appliances and washing cycles is needed. Soiled consumer wash loads from U.K. households were found to release a mean of 114 ± 66.8 ppm (mg microfiber per kg fabric) (n = 79) fibers during typical washing conditions and these were mainly composed of natural fibers. Microfiber release decreased with increasing wash load size and hence decreasing water to fabric ratio, with mean microfiber release from wash loads in the mass range 1.0-3.5 kg (n = 57) found to be 132.4 ± 68.6 ppm, significantly (p = 3.3 x 10-8) higher than the 66.3 ± 27.0 ppm of those in the 3.5-6.0 kg range (n = 22). In further tests with similar soiled consumer wash loads, moving to colder and quicker washing cycles (i.e. 15°C for 30 mins, as opposed to 40°C for 85 mins) significantly reduced microfiber generation by 30% (p = 0.036) and reduced whiteness loss by 42% (p = 0.000) through reduced dye transfer and soil re-deposition, compared to conventional 40°C cycles. In multicycle technical testing, detergent pods were selected for investigation and found to have no impact on microfiber release compared to washing in water alone. Fabric softeners were also found to have no direct impact on microfiber release in testing under both European and North American washing conditions. Extended testing of polyester fleece garments up to a 48-wash cycle history under European conditions found that microfiber release significantly reduced to a consistent low level of 28.7 ± 10.9 ppm from eight through 64 washes. Emerging North American High-Efficiency top-loading washing machines generated significantly lower microfiber release than traditional top-loading machines, likely due to their lower water fill volumes and hence lower water to fabric ratio, with a 69.7% reduction observed for polyester fleece (n = 32, p = 7.9 x 10-6) and 37.4% reduction for polyester T-shirt (n = 32, p = 0.0032). These results conclude that consumers can directly reduce the levels of microfibers generated per wash during domestic textile washing by using colder and quicker wash cycles, washing complete (but not overfilled) loads, and (in North America) converting to High-Efficiency washing machines. Moving to colder and quicker cycles will also indirectly reduce microfiber release by extending the lifetime of clothing, leading to fewer new garments being purchased and hence lower incidence of the high microfiber release occurring during the first few washes of a new item.


Asunto(s)
Lavandería/métodos , Contaminantes Químicos del Agua/análisis , Europa (Continente) , Composición Familiar , Microplásticos , América del Norte , Compuestos Orgánicos/efectos adversos , Plásticos , Poliésteres , Textiles , Aguas Residuales , Agua
7.
Environ Sci Technol ; 53(20): 11735-11744, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31460752

RESUMEN

The influence of laundry washing parameters on the release of microfibers (MF) from polyester textiles was studied. These fibers are an important type of microplastic pollution. However, the factors which affect MF release during laundry are poorly understood and more rigorous methods for quantifying this release are needed. A novel method was therefore developed using a tergotometer with eight 1000 mL washing vessels and the CIELab color space measure of lightness (L*). L* was related to the mass of released MFs by creating a calibration curve to quantify the amounts of MFs released from textiles during washing. This method was used to investigate the effect of water-volume, agitation, temperature, and duration of the wash on MF release. Counterintuitively, increased water-volume, characteristic of European "delicate" cycles, resulted in the greatest release of MFs. Full-scale testing was then carried out using domestic washing machines with real consumer cycles to determine the effect of cycle type on MF release. In the first wash, delicate wash cycles released 800 000 more MFs (94 mg/kg) per wash than a lower water-volume standard wash and also increased MF release in subsequent washing cycles (P < 0.05). These results indicate that a high water-volume-to-fabric ratio is the most influential factor for MF release, rather than agitation as previously thought. Therefore, consumers can reduce MF release by avoiding high water-volume washes (delicate cycles), transitioning to appliances that use a lower water-volume (North American high-efficiency washing machines), and ensuring that full wash loads are used.


Asunto(s)
Lavandería , Plásticos , Textiles , Aguas Residuales , Agua
8.
Langmuir ; 35(19): 6468-6475, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-30995049

RESUMEN

Force spectroscopy was used to show that extracellular DNA (eDNA) has a pre-eminent structural role in a biofilm. The adhesive behavior of extracellular polymeric substances to poly(ethylene terephthalate), a model hydrophobic surface, was measured in response to their degradation by hydrolytic enzymes known for their biofilm dispersion potential: DNaseI, protease, cellulase, and mannanase. Only treatment with DNaseI significantly decreased the adhesive force of the model bacterium Micrococcus luteus with the surface, and furthermore this treatment almost completely eliminated any components of the biofilm maintaining the adhesion, establishing a key structural role for eDNA.


Asunto(s)
Biopelículas , ADN Bacteriano/metabolismo , Espacio Extracelular/metabolismo , Micrococcus luteus/citología , Micrococcus luteus/fisiología , Adhesión Bacteriana , Desoxirribonucleasa I/metabolismo , Hidrólisis , Polisacáridos Bacterianos/metabolismo
9.
Biotechnol J ; 6(2): 224-30, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21298807

RESUMEN

The carbohydrate oxidase from Microdochium nivale (CAOX), heterologously expressed in Aspergillus oryzae, and cellobiose dehydrogenase from Myriococcum thermophilum (MtCDH), were assessed for their ability to generate bleaching species at a pH suitable for liquid detergents. The substrate specificities of CAOX and MtCDH were analyzed on a large variety of soluble and insoluble substrates, using oxygen as an electron receptor. Even insoluble substrates like cellulose were oxidized from both CAOX and MtCDH, but only MtCDH produced H2O2 on cotton as the sole substrate. To enhance the amount of cello-oligosaccharides formed from cotton as substrates for CAOX and MtCDH, various cellulases were used in combination with MtCDH or CAOX, leading to a 10-fold increase in H2O2. As model substrates for colored stains, the degradation of pure anthocyanins and stain removal of blueberry stains by CAOX and MtCDH was examined in the absence and presence of a horseradish peroxidase. Both enzymes were able to produce an amount of H2O2 sufficient to decolorize the pure anthocyanins within 2 h and showed significant cleaning benefits on the stains.


Asunto(s)
Basidiomycota/enzimología , Deshidrogenasas de Carbohidratos/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidorreductasas/metabolismo , Aspergillus oryzae/metabolismo , Detergentes/química , Peroxidasa de Rábano Silvestre/metabolismo , Microbiología Industrial/métodos , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA