Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chin Med ; 19(1): 27, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365794

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is a prevalent complication of diabetes and the leading cause of end-stage renal disease. Recent evidence suggests that total flavonoids of Astragalus (TFA) has promising effects on diabetes; however, its influence on DKD and the underlying mechanism remains unclear. METHODS: In this study, we induced the DKD model using streptozotocin (STZ) in male C57BL/6J mice and utilized glomerular endothelial cell (GEC) lines for in vitro investigations. We constructed a network pharmacology analysis to understand the mechanism of TFA in DKD. The mechanism of TFA action on DKD was investigated through Western blot analysis and multi-immunological methods. RESULTS: Our findings revealed that TFA significantly reduced levels of urinary albumin (ALB). Network pharmacology and intracellular pathway experiments indicated the crucial involvement of the PI3K/AKT signaling pathway in mediating these effects. In vitro experiments showed that TFA can preserve the integrity of the glomerular filtration barrier by inhibiting the expression of inflammatory factors TNF-alpha and IL-8, reducing oxidative stress. CONCLUSION: Our findings demonstrated that TFA can ameliorates the progression of DKD by ameliorating renal fibrosis and preserving the integrity of the kidney filtration barrier. These results provide pharmacological evidence supporting the use of TFA in the treatment of kidney diseases.

2.
J Ethnopharmacol ; 317: 116706, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37301305

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used clinically to treat inflammatory diseases clinically. However, the adverse effects of NSAIDs cannot be ignored. Therefore, it is critical for us to find alternative anti-inflammatory drugs that can reduce adverse reactions to herbal medicine, such as Iris tectorum Maxim., which has therapeutic effects and can treat inflammatory diseases and liver-related diseases. AIM OF THE STUDY: This study aimed to isolate active compounds from I. tectorum and investigate their anti-inflammatory effects and action mechanisms. MATERIALS AND METHODS: Fourteen compounds were isolated from I. tectorum using silica gel column chromatography, Sephadex LH-20, ODS and high performance liquid chromatography, and their structures were identified by examining physicochemical properties, ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Classical inflammatory cell models were established using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and rat primary peritoneal macrophages to examine the effect of these compounds. To examine the action mechanisms, the nitric oxide (NO) levels were measured by Griess reagent and the levels of inflammatory cytokines in the supernatant were measured by ELISA; The expressions of major proteins in prostaglandin E2 (PGE2) synthesis and the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were examined by Western blotting, and the mRNA expression levels were measured by quantitative real-time polymerase chain reaction; and the nuclear translocation of p65 was examined by high content imaging. Molecular docking was used to predict the binding of active compound to target protein. RESULTS: Our findings revealed that Iristectorigenin C (IT24) significantly inhibited the levels of NO and PGE2 without affecting cyclooxygenase (COX)-1/COX-2 expression in LPS-induced RAW264.7 cells and rat peritoneal macrophages. Furthermore, IT24 was shown to decrease the expression of microsomal prostaglandin synthetase-1 (mPGES-1) in LPS-induced rat peritoneal macrophages. IT24 did not suppress the phosphorylation and nuclear translocation of proteins in the NF-κB pathway, but it inhibited the phosphorylation of p38/JNK in LPS-stimulated RAW264.7 cells. Additionally, molecular docking analysis indicated that IT24 may directly bind to the mPGES-1 protein. CONCLUSION: IT24 might inhibit mPGES-1 and the p38/JNK pathway to exert its anti-inflammatory effects and could be also developed as an inhibitor of mPGES-1 to prevent and treat mPGES-1-related diseases, such as inflammatory diseases, and holds promise for further research and drug development.


Asunto(s)
Lipopolisacáridos , Sistema de Señalización de MAP Quinasas , Ratas , Animales , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología , Antiinflamatorios no Esteroideos/farmacología , Macrófagos Peritoneales , Ciclooxigenasa 2/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo
3.
Front Plant Sci ; 13: 1092643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618650

RESUMEN

Background: Understanding the spatial distribution of active compounds can effectively evaluate the quality of decoction pieces of traditional Chinese medicine (TCM). Traditional methods are economical and practical but lack chemical information on the original distribution. Time-of-flight secondary ion mass spectrometry (TOF-SIMS), with the advantage of non-destructive detection of samples, can directly analyze the distribution of chemical compounds on the surface of various samples. Methods: In this study, TOF-SIMS image analysis technology was used to detect TCM for the first time. Taking Coptis rhizome (CR) as an example, a commonly used TCM, the distribution of the compounds in the cross-section of CR was studied. Meanwhile, ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLCQQQ-MS/MS) was used to verify the results of TOF-SIMS. Results: The distribution of nine active compounds: berberine, epiberberine, coptisine, palmatine, columbamine, jatrorrhizine, tetrahydricheilanthifolinium, and oxyberberine, was well imaged in the cross-section of CR by TOF-SIMS. The content of berberine and epiberberine was the highest; Palmatine distribution in the pith was more than that in other parts; Oxyberberine was mainly concentrated in the cork and xylem rays. Normalization analysis showed contents of these compounds increased along with the growth years. The result was consistent with UPLC-QQQ-MS/MS. Conclusion: The TOF-SIMS method can display the spatial distribution status of the active compounds of herbs, providing a basis for selecting the medicine site with non-destructive and fast detection.

4.
Food Chem ; 354: 129454, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33765463

RESUMEN

In order to reveal the color formation mechanism of blood-red edible bird's nests (EBNs) and develop a quick and specific strategy to distinguish the artificial fake one, multiple methods of UPLC-TOF/MS, UV, NMR, FT-IR and 2D IR were used to detect the chemical markers of the reddening reaction, the results showed that the reddening substances were C9H10N2O5 and C9H9NO6, which were verified as products of a phenol-keto tautomerism evolved from l-tyrosine. Moreover, natural and artificial red EBNs with varying degrees of chemical fumigation also can be successfully distinguished using the chemical markers, and the protein variation in SDS-PAGE gel could also support the distinction. This work established a systematic method of chemical identification for both natural and artificial blood-red EBNs, and provided a new identification strategy for food safety control that can promote the development of a healthier market of EBNs.


Asunto(s)
Aves/metabolismo , Color , Tirosina/química , Animales , Cromatografía Líquida de Alta Presión , Saliva/química , Saliva/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier
5.
Front Plant Sci ; 12: 791219, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003182

RESUMEN

With the development of sequencing technology, the research on medicinal plants is no longer limited to the aspects of chemistry, pharmacology, and pharmacodynamics, but reveals them from the genetic level. As the price of next-generation sequencing technology becomes affordable, and the long-read sequencing technology is established, the medicinal plant genomes with large sizes have been sequenced and assembled more easily. Although the review of plant genomes has been reported several times, there is no review giving a systematic and comprehensive introduction about the development and application of medicinal plant genomes that have been reported until now. Here, we provide a historical perspective on the current situation of genomes in medicinal plant biology, highlight the use of the rapidly developing sequencing technologies, and conduct a comprehensive summary on how the genomes apply to solve the practical problems in medicinal plants, like genomics-assisted herb breeding, evolution history revelation, herbal synthetic biology study, and geoherbal research, which are important for effective utilization, rational use and sustainable protection of medicinal plants.

6.
Chin J Nat Med ; 18(10): 770-778, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33039056

RESUMEN

Panax ginseng and Panax quinquefolius have similar bioactive components and morphological characteristics, but they are known to have different medicinal values, high-sensitive and accurate method is expected to identify the sources of ginseng products and evaluate the quality, but with a huge challenge. Our established UHPLC-TOF/MS method coupled with orthogonal partial least squares discriminant analysis (OPLS-DA) model based on 18 ginsenosides was applied to discriminate the sources of raw medicinal materials in ginseng products, and nested PCR strategy was used to discover 6 novel single nucleotide polymorphism (SNP) sites in functional dammarenediol synthase (DS) gene for genetic authentication of P. ginseng and P. quinquefolius for the first time. OPLS-DA model could identify the sources of raw ginseng materials are real or not. SNP markers were applied to identify ginseng fresh samples as well as commercial products, and proved to be successful. This established molecular method can tell exact source information of adulterants, and it was highly sensitive and specific even when total DNA amount was only 0.1 ng and the adulteration was as low as 1%. Therefore, this study made an attempt at the exploration of new type SNP marker for variety authentication and function regulation at the same time, and the combination of chemical and molecular discrimination methods provided the comprehensive evaluation and authentication for the sources of ginseng herbs and products.


Asunto(s)
Contaminación de Medicamentos , Medicamentos Herbarios Chinos/análisis , Ginsenósidos/análisis , Panax/genética , Polimorfismo de Nucleótido Simple , Medicamentos Herbarios Chinos/normas , Marcadores Genéticos , Panax/química
7.
Phytomedicine ; 67: 153155, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31901890

RESUMEN

BACKGROUND: Astragali Radix (AR) is a well-known Chinese herbal medicine. The quality of AR can be affected by many factors such as species, growth mode and production area, but there are still no chemical markers to distinguish it. PURPOSE: To explore chemical markers for improving the quality assessment of AR and discover chemical markers for identifying species, growth mode and production area of AR. METHODS: A highly sensitive, efficient and accurate method based on ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) for simultaneous quantitative determination of 14 major chemical components (five flavonoids and nine triterpene saponins) in 94 batches of AR from China, Republic of Korea and Germany was developed for the first time. To explore chemical markers and assess changes in the contents of 14 compounds in the 94 batches of AR samples from different regions, hierarchical clustering analysis (HCA) and principal component analysis (PCA) were performed. RESULTS: Astragaloside III was not only an important chemical marker for distinguishing two species of AR, i.e.: Astragalus mongholicus and A. membranaceus, but also a potential chemical marker for the classification of cultivated and semi-wild AR. In addition, in the batches of cultivated AR, the content of isoastragaloside II and cyclocephaloside II were greater in batches from the region of Shaanxi Province than that of other Provinces in China, but the content of calycosin-7-O-ß-D-glucoside and astragaloside IV, which are the quality control markers of AR required by the Chinese Pharmacopoeia, were higher than that of other Provinces in China. In addition, the content of calycosin-7-O-ß-D-glucoside, ononin, calycosin and astragaloside I could be used to identify samples of AR collected from China, Republic of Korea and Germany. CONCLUSION: This UHPLC-QQQ-MS/MS method could be applied to the quantitative evaluation of AR and could be an important and meaningful reference to develop chemical markers for quality control of AR.


Asunto(s)
Astragalus propinquus/química , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas en Tándem/métodos , Astragalus propinquus/crecimiento & desarrollo , China , Flavonoides/análisis , Alemania , Análisis de Componente Principal , Control de Calidad , Reproducibilidad de los Resultados , República de Corea , Saponinas/análisis , Triterpenos/análisis
8.
Chin J Nat Med ; 16(10): 749-755, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30322608

RESUMEN

To accelerate the breeding process of cultivated Ophiocordyceps sinensis and increase its yield, it is important to identify molecular fingerprint of dominant O. sinensis. In the present study, we collected 3 batches of industrially cultivated O. sinensis product with higher yield than the others and compared their internal transcribed spacer (ITS) sequences with the wild and the reported. The ITS sequence was obtained by bidirectional sequencing and analyzed with molecular systematics as a DNA barcode for rapid and accurate identification of wild and cultivated O. sinensis collected. The ITS sequences of O. sinensis with detailed collection loci on NCBI were downloaded to construct a phylogenetic tree together with the sequences obtained from the present study by using neighbor-joining method based on their evolution relationship. The information on collection loci was analyzed with ArcGIS 10.2 to demonstrate the geographic distribution of these samples and thus to determine the origin of the dominant samples. The results showed that all wild and cultivated samples were identified as O. sinensis and all sequences were divided into seven phylogenetic groups in the tree. Those groups were precisely distributed on the map and the process of their system evolution was clearly presented. The three cultivated samples were clustered into two dominant groups, showing the correlation between the industrially cultivated samples and the dominant wild samples, which can provide references for its optimized breeding in the future.


Asunto(s)
ADN de Hongos/genética , ADN Intergénico/genética , Hypocreales/crecimiento & desarrollo , Hypocreales/genética , Filogenia , Cruzamiento , Genes del Tipo Sexual de los Hongos , Hypocreales/química , Hypocreales/clasificación
9.
Chin J Nat Med ; 15(9): 703-709, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28991532

RESUMEN

Medicinal almonds have been used for over 2 000 years and its clinical efficacy includes relieving cough and asthma. The domestic market in China is flooded with different kinds of dried almonds, such as bitter almond (Armeniacae Semen Amarum, AAS), sweet almond (Armeniacae Semen Dulce, ADS), salted almond (Armeniacae Semen Salsa, ASS), and their sulfur-fumigating products (Armeniacae Semen Sulphur Fumabat, ASFS). Wide varieties of almonds may lead to uncertain efficacy, aberrant quality, and even increased safety risk. However, the authentication method for medicinal almonds has not been reported, although imposters may lead to ineffective medical response. In the present study, Fourier transform infrared spectroscopy (FTIR) and the 2-dimensional infrared (2D-IR) spectroscopy were used to identify different almonds, which were extracted with different solvents including water, methanol, ethanol, chloroform and ethyl acetate, respectively. A new simple FTIR method was developed in the present study. According to the gradient solvent polarity, a new 2D IR method was first developed, and the commodities of almonds in China were analyzed by using the FTIR spectroscopy supported by hierarchical clustering of characteristic peaks. Moreover, 5-hydroxymethyl-2-furfural could be used as a detection index and control target in the quality control of medicinal almonds.


Asunto(s)
Medicamentos Herbarios Chinos/química , Prunus dulcis/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , China , Medicamentos Herbarios Chinos/aislamiento & purificación , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA