Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Autophagy ; 19(10): 2769-2788, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37405374

RESUMEN

Mitochondria are susceptible to damage resulting from their activity as energy providers. Damaged mitochondria can cause harm to the cell and thus mitochondria are subjected to elaborate quality-control mechanisms including elimination via lysosomal degradation in a process termed mitophagy. Basal mitophagy is a house-keeping mechanism fine-tuning the number of mitochondria according to the metabolic state of the cell. However, the molecular mechanisms underlying basal mitophagy remain largely elusive. In this study, we visualized and assessed the level of mitophagy in H9c2 cardiomyoblasts at basal conditions and after OXPHOS induction by galactose adaptation. We used cells with a stable expression of a pH-sensitive fluorescent mitochondrial reporter and applied state-of-the-art imaging techniques and image analysis. Our data showed a significant increase in acidic mitochondria after galactose adaptation. Using a machine-learning approach we also demonstrated increased mitochondrial fragmentation by OXPHOS induction. Furthermore, super-resolution microscopy of live cells enabled capturing of mitochondrial fragments within lysosomes as well as dynamic transfer of mitochondrial contents to lysosomes. Applying correlative light and electron microscopy we revealed the ultrastructure of the acidic mitochondria confirming their proximity to the mitochondrial network, ER and lysosomes. Finally, exploiting siRNA knockdown strategy combined with flux perturbation with lysosomal inhibitors, we demonstrated the importance of both canonical as well as non-canonical autophagy mediators in lysosomal degradation of mitochondria after OXPHOS induction. Taken together, our high-resolution imaging approaches applied on H9c2 cells provide novel insights on mitophagy during physiologically relevant conditions. The implication of redundant underlying mechanisms highlights the fundamental importance of mitophagy.Abbreviations: ATG: autophagy related; ATG7: autophagy related 7; ATP: adenosine triphosphate; BafA1: bafilomycin A1; CLEM: correlative light and electron microscopy; EGFP: enhanced green fluorescent protein; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OXPHOS: oxidative phosphorylation; PepA: pepstatin A; PLA: proximity ligation assay; PRKN: parkin RBR E3 ubiquitin protein ligase; RAB5A: RAB5A, member RAS oncogene family; RAB7A: RAB7A, member RAS oncogene family; RAB9A: RAB9A, member RAS oncogene family; ROS: reactive oxygen species; SIM: structured illumination microscopy; siRNA: short interfering RNA; SYNJ2BP: synaptojanin 2 binding protein; TEM: transmission electron microscopy; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1.


Asunto(s)
Autofagia , Mitofagia , Mitofagia/genética , Galactosa/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
FEBS J ; 290(4): 1096-1116, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36111389

RESUMEN

Tripartite motif-containing protein 27 (TRIM27/also called RFP) is a multifunctional ubiquitin E3 ligase involved in numerous cellular functions, such as proliferation, apoptosis, regulation of the NF-kB pathway, endosomal recycling and the innate immune response. TRIM27 interacts directly with TANK-binding kinase 1 (TBK1) and regulates its stability. TBK1 in complex with autophagy receptors is recruited to ubiquitin chains assembled on the mitochondrial outer membrane promoting mitophagy. Here, we identify TRIM27 as an autophagy substrate, depending on ATG7, ATG9 and autophagy receptors for its lysosomal degradation. We show that TRIM27 forms ubiquitylated cytoplasmic bodies that co-localize with autophagy receptors. Surprisingly, we observed that induced expression of EGFP-TRIM27 in HEK293 FlpIn TRIM27 knockout cells mediates mitochondrial clustering. TRIM27 interacts with autophagy receptor SQSTM1/p62, and the TRIM27-mediated mitochondrial clustering is facilitated by SQSTM/p62. We show that phosphorylated TBK1 is recruited to the clustered mitochondria. Moreover, induced mitophagy activity is reduced in HEK293 FlpIn TRIM27 knockout cells, while re-introduction of EGFP-TRIM27 completely restores the mitophagy activity. Inhibition of TBK1 reduces mitophagy in HEK293 FlpIn cells and in the reconstituted EGFP-TRIM27-expressing cells, but not in HEK293 FlpIn TRIM27 knockout cells. Altogether, these data reveal novel roles for TRIM27 in mitophagy, facilitating mitochondrial clustering via SQSTM1/p62 and mitophagy via stabilization of phosphorylated TBK1 on mitochondria.


Asunto(s)
Autofagia , Mitocondrias , Mitofagia , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Humanos , Autofagia/fisiología , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Mitocondrias/genética , Mitocondrias/metabolismo , Mitofagia/fisiología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Sequestosoma-1/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Motivos Tripartitos/metabolismo
3.
Sci Rep ; 12(1): 11550, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798804

RESUMEN

Epithelial alarmins are gaining interest as therapeutic targets for chronic inflammation. The nuclear alarmin interleukin-33 (IL-33) is upregulated in the colonic mucosa of acute ulcerative colitis (UC) and may represent an early instigator of the inflammatory cascade. However, it is not clear what signals drive the expression of IL-33 in the colonic mucosa, nor is the exact role of IL-33 elucidated. We established an ex vivo model using endoscopic colonic biopsies from healthy controls and UC patients. Colonic biopsies exposed to hypo-osmotic medium induced a strong nuclear IL-33 expression in colonic crypts in both healthy controls and UC biopsies. Mucosal IL33 mRNA was also significantly increased following hypo-osmotic stress in healthy controls compared to non-stimulated biopsies (fold change 3.9, p-value < 0.02). We observed a modest induction of IL-33 in response to TGF-beta-1 stimulation, whereas responsiveness to inflammatory cytokines TNF and IFN-gamma was negligible. In conclusion our findings indicate that epithelial IL-33 is induced by hypo-osmotic stress, rather than prototypic proinflammatory cytokines in colonic ex vivo biopsies. This is a novel finding, linking a potent cytokine and alarmin of the innate immune system with cellular stress mechanisms and mucosal inflammation.


Asunto(s)
Alarminas , Colitis Ulcerosa , Interleucina-33 , Presión Osmótica , Alarminas/metabolismo , Colitis Ulcerosa/patología , Colon/patología , Citocinas/metabolismo , Humanos , Inflamación/patología , Interleucina-33/metabolismo , Mucosa Intestinal/metabolismo
4.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34037656

RESUMEN

Mitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 regulates mitochondrial architecture by controlling formation and assembly of the MICOS complex decisive for normal cristae morphology and exerts quality control of MICOS components. To this end, SAMM50 recruits ATG8 family proteins through a canonical LIR motif and interacts with p62/SQSTM1 to mediate basal mitophagy of SAM and MICOS components. Upon metabolic switch to oxidative phosphorylation, SAMM50 and p62 cooperate to mediate efficient mitophagy.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Fosforilación Oxidativa , Proteína Sequestosoma-1/metabolismo , Animales , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Sequestosoma-1/genética , Transducción de Señal
5.
J Cell Biol ; 220(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33871553

RESUMEN

The Golgi complex is essential for the processing, sorting, and trafficking of newly synthesized proteins and lipids. Golgi turnover is regulated to meet different cellular physiological demands. The role of autophagy in the turnover of Golgi, however, has not been clarified. Here we show that CALCOCO1 binds the Golgi-resident palmitoyltransferase ZDHHC17 to facilitate Golgi degradation by autophagy during starvation. Depletion of CALCOCO1 in cells causes expansion of the Golgi and accumulation of its structural and membrane proteins. ZDHHC17 itself is degraded by autophagy together with other Golgi membrane proteins such as TMEM165. Taken together, our data suggest a model in which CALCOCO1 mediates selective Golgiphagy to control Golgi size and morphology in eukaryotic cells via its interaction with ZDHHC17.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Aciltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al Calcio/genética , Aparato de Golgi/genética , Células HeLa , Humanos , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas , Factores de Transcripción/genética
6.
Sci Rep ; 10(1): 1277, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992741

RESUMEN

The long non-coding RNA NEAT1 locus is transcribed into two overlapping isoforms, NEAT1_1 and NEAT1_2, of which the latter is essential for the assembly of nuclear paraspeckles. NEAT1 is abnormally expressed in a wide variety of human cancers. Emerging evidence suggests that the two isoforms have distinct functions in gene expression regulation, and recently it was shown that NEAT1_2, but not NEAT1_1, expression predicts poor clinical outcome in cancer. Here, we report that NEAT1_2 expression correlates with HER2-positive breast cancers and high-grade disease. We provide evidence that NEAT1_1 and NEAT1_2 have distinct expression pattern among different intrinsic breast cancer subtypes. Finally, we show that NEAT1_2 expression and paraspeckle formation increase upon lactation in humans, confirming what has previously been demonstrated in mice.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/biosíntesis , ARN Neoplásico/biosíntesis , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7
7.
J Biol Chem ; 295(5): 1240-1260, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31857374

RESUMEN

Human ATG8 family proteins (ATG8s) are active in all steps of the macroautophagy pathway, and their lipidation is essential for autophagosome formation. Lipidated ATG8s anchored to the outer surface of the phagophore serve as scaffolds for binding of other core autophagy proteins and various effector proteins involved in trafficking or fusion events, whereas those at the inner surface are needed for assembly of selective autophagy substrates. Their scaffolding role depends on specific interactions between the LC3-interacting region (LIR) docking site (LDS) in ATG8s and LIR motifs in various interaction partners. LC3B is phosphorylated at Thr-50 within the LDS by serine/threonine kinase (STK) 3 and STK4. Here, we identified LIR motifs in STK3 and atypical protein kinase Cζ (PKCζ) and never in mitosis A (NIMA)-related kinase 9 (NEK9). All three kinases phosphorylated LC3B Thr-50 in vitro A phospho-mimicking substitution of Thr-50 impaired binding of several LIR-containing proteins, such as ATG4B, FYVE, and coiled-coil domain-containing 1 (FYCO1), and autophagy cargo receptors p62/sequestosome 1 (SQSTM1) and neighbor of BRCA1 gene (NBR1). NEK9 knockdown or knockout enhanced degradation of the autophagy receptor and substrate p62. Of note, the suppression of p62 degradation was mediated by NEK9-mediated phosphorylation of LC3B Thr-50. Consistently, reconstitution of LC3B-KO cells with the phospho-mimicking T50E variant inhibited autophagic p62 degradation. PKCζ knockdown did not affect autophagic p62 degradation, whereas STK3/4 knockouts inhibited autophagic p62 degradation independently of LC3B Thr-50 phosphorylation. Our findings suggest that NEK9 suppresses LC3B-mediated autophagy of p62 by phosphorylating Thr-50 within the LDS of LC3B.


Asunto(s)
Autofagia/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Quinasas Relacionadas con NIMA/metabolismo , Dominios y Motivos de Interacción de Proteínas/genética , Proteína Sequestosoma-1/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Cromatografía Líquida de Alta Presión , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Mutación , Quinasas Relacionadas con NIMA/genética , Fosforilación , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño , Proteína Sequestosoma-1/química , Proteína Sequestosoma-1/genética , Serina-Treonina Quinasa 3 , Espectrometría de Masas en Tándem , Treonina/metabolismo
8.
J Cell Sci ; 132(23)2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31685529

RESUMEN

The tripartite motif (TRIM) proteins constitute a family of ubiquitin E3 ligases involved in a multitude of cellular processes, including protein homeostasis and autophagy. TRIM32 is characterized by six protein-protein interaction domains termed NHL, various point mutations in which are associated with limb-girdle-muscular dystrophy 2H (LGMD2H). Here, we show that TRIM32 is an autophagy substrate. Lysosomal degradation of TRIM32 was dependent on ATG7 and blocked by knockout of the five autophagy receptors p62 (also known as SQSTM1), NBR1, NDP52 (also known as CALCOCO2), TAX1BP1 and OPTN, pointing towards degradation by selective autophagy. p62 directed TRIM32 to lysosomal degradation, while TRIM32 mono-ubiquitylated p62 on lysine residues involved in regulation of p62 activity. Loss of TRIM32 impaired p62 sequestration, while reintroduction of TRIM32 facilitated p62 dot formation and its autophagic degradation. A TRIM32LGMD2H disease mutant was unable to undergo autophagic degradation and to mono-ubiquitylate p62, and its reintroduction into the TRIM32-knockout cells did not affect p62 dot formation. In light of the important roles of autophagy and p62 in muscle cell proteostasis, our results point towards impaired TRIM32-mediated regulation of p62 activity as a pathological mechanisms in LGMD2H.


Asunto(s)
Distrofias Musculares/metabolismo , Proteína Sequestosoma-1/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Autofagia/genética , Autofagia/fisiología , Células HEK293 , Células HeLa , Humanos , Inmunoprecipitación , Distrofias Musculares/genética , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Unión Proteica , Proteína Sequestosoma-1/genética , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética
9.
J Cell Biol ; 217(10): 3640-3655, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30018090

RESUMEN

It is not clear to what extent starvation-induced autophagy affects the proteome on a global scale and whether it is selective. In this study, we report based on quantitative proteomics that cells during the first 4 h of acute starvation elicit lysosomal degradation of up to 2-3% of the proteome. The most significant changes are caused by an immediate autophagic response elicited by shortage of amino acids but executed independently of mechanistic target of rapamycin and macroautophagy. Intriguingly, the autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4 are among the most efficiently degraded substrates. Already 1 h after induction of starvation, they are rapidly degraded by a process that selectively delivers autophagy receptors to vesicles inside late endosomes/multivesicular bodies depending on the endosomal sorting complex required for transport III (ESCRT-III). Our data support a model in which amino acid deprivation elicits endocytosis of specific membrane receptors, induction of macroautophagy, and rapid degradation of autophagy receptors by endosomal microautophagy.


Asunto(s)
Autofagia , Endosomas/metabolismo , Modelos Biológicos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Coactivadores de Receptor Nuclear/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
10.
Nat Commun ; 8(1): 1264, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097655

RESUMEN

Selective autophagy is a catabolic process with which cellular material is specifically targeted for degradation by lysosomes. The function of selective autophagic degradation of self-components in the regulation of innate immunity is still unclear. Here we show that Drosophila Kenny, the homolog of mammalian IKKγ, is a selective autophagy receptor that mediates the degradation of the IκB kinase complex. Selective autophagic degradation of the IκB kinase complex prevents constitutive activation of the immune deficiency pathway in response to commensal microbiota. We show that autophagy-deficient flies have a systemic innate immune response that promotes a hyperplasia phenotype in the midgut. Remarkably, human IKKγ does not interact with mammalian Atg8-family proteins. Using a mathematical model, we suggest mechanisms by which pathogen selection might have driven the loss of LIR motif functionality during evolution. Our results suggest that there may have been an autophagy-related switch during the evolution of the IKKγ proteins in metazoans.


Asunto(s)
Autofagia/genética , Proteínas de Drosophila/genética , Quinasa I-kappa B/genética , Inmunidad Innata/genética , Microbiota/inmunología , Simbiosis/inmunología , Animales , Animales Modificados Genéticamente , Autofagia/inmunología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Drosophila , Proteínas de Drosophila/inmunología , Células HeLa , Humanos , Hiperplasia/genética , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Inmunidad Innata/inmunología , Infecciones/inmunología , Intestinos/patología , Modelos Teóricos , Fenotipo
11.
J Biol Chem ; 290(49): 29361-74, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26468287

RESUMEN

FYCO1 (FYVE and coiled-coil protein 1) is a transport adaptor that binds to phosphatidylinositol 3-phosphate, to Rab7, and to LC3 (microtubule-associated protein 1 light chain 3) to mediate transport of late endosomes and autophagosomes along microtubules in the plus end direction. We have previously shown that FYCO1 binds to LC3B via a 19-amino acid sequence containing a putative core LC3-interacting region (LIR) motif. Here, we show that FYCO1 preferentially binds to LC3A and -B. By peptide array-based two-dimensional mutational scans of the binding to LC3B, we found FYCO1 to contain a C-terminally extended LIR domain. We determined the crystal structure of a complex between a 13-amino acid LIR peptide from FYCO1 and LC3B at 1.53 Å resolution. By combining the structural information with mutational analyses, both the basis for the C-terminally extended LIR and the specificity for LC3A/B binding were revealed. FYCO1 contains a 9-amino acid-long F-type LIR motif. In addition to the canonical aromatic residue at position 1 and the hydrophobic residue at position 3, an acidic residue and a hydrophobic residue at positions 8 and 9, respectively, are important for efficient binding to LC3B explaining the C-terminal extension. The specificity for binding to LC3A/B is due to the interaction between Asp(1285) in FYCO1 and His(57) in LC3B. To address the functional significance of the LIR motif of FYCO1, we generated FYCO1 knock-out cells that subsequently were reconstituted with GFP-FYCO1 WT and LIR mutant constructs. Our data show that FYCO1 requires a functional LIR motif to facilitate efficient maturation of autophagosomes under basal conditions, whereas starvation-induced autophagy was unaffected.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autofagia , Cristalografía por Rayos X , Análisis Mutacional de ADN , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/química , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
12.
J Biol Chem ; 287(47): 39275-90, 2012 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23043107

RESUMEN

Autophagy is a lysosome-dependent degradation system conserved among eukaryotes. The mammalian Atg1 homologues, Unc-51 like kinase (ULK) 1 and 2, are multifunctional proteins with roles in autophagy, neurite outgrowth, and vesicle transport. The mammalian ULK complex involved in autophagy consists of ULK1, ULK2, ATG13, FIP200, and ATG101. We have used pulldown and peptide array overlay assays to study interactions between the ULK complex and six different ATG8 family proteins. Strikingly, in addition to ULK1 and ULK2, ATG13 and FIP200 interacted with human ATG8 proteins, all with strong preference for the GABARAP subfamily. Similarly, yeast and Drosophila Atg1 interacted with their respective Atg8 proteins, demonstrating the evolutionary conservation of the interaction. Use of peptide arrays allowed precise mapping of the functional LIR motifs, and two-dimensional scans of the ULK1 and ATG13 LIR motifs revealed which substitutions that were tolerated. This information, combined with an analysis of known LIR motifs, provides us with a clearer picture of sequence requirements for LIR motifs. In addition to the known requirements of the aromatic and hydrophobic residues of the core motif, we found the interactions to depend strongly on acidic residues surrounding the central core LIR motifs. A preference for either a hydrophobic residue or an acidic residue following the aromatic residue in the LIR motif is also evident. Importantly, the LIR motif is required for starvation-induced association of ULK1 with autophagosomes. Our data suggest that ATG8 proteins act as scaffolds for assembly of the ULK complex at the phagophore.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Microfilamentos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencias de Aminoácidos , Animales , Familia de las Proteínas 8 Relacionadas con la Autofagia , Drosophila melanogaster , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Microfilamentos/genética , Complejos Multiproteicos/genética , Saccharomyces cerevisiae
13.
Autophagy ; 6(6): 784-93, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20574168

RESUMEN

Macroautophagy (hereafter referred to as autophagy) is a catabolic pathway to isolate and transport cytosolic components to the lysosome for degradation. Recently, autophagy receptors, like p62/SQSTM1 and NBR1, which physically link autophagic cargo to ATG8/MAP1-LC3/GABARAP family members located on the forming autophagic membranes, have been identified. To identify conditions or compounds that affect autophagy, cell systems that efficiently report on autophagic flux are required. Here we describe reporter cell systems based on induced expression of GFPp62, GFP-NBR1 or GFP-LC3B. The degradation of the fusion proteins was followed after promoter shut-off by flow cytometry of live cells. All three fusion proteins were degraded at a basal rate by autophagy. Surprisingly, the basal degradation rate varied for the three reporter fusion proteins. GFP-LC3B was the most stable protein. GFP-NBR1 was most efficiently degraded under basal conditions while degradation of GFP-p62 displayed the strongest response to amino acid starvation. GFP-p62 was found to perform the best of the tested reporters. Single cell analysis of autophagic flux by flow cytometry allows estimates of heterogeneous cell populations. The feasibility of this approach was demonstrated using transient overexpression of a dominant negative ULK1 kinase and siRNA-mediated knockdown of LC3B to inhibit autophagic degradation of GFP-p62. The inducible GFP-p62 cell system allows quantification by several approaches and will be useful in screening for compounds or conditions that affect the rate of autophagy. Inducers of autophagy can be identified using rich medium whereas inhibitors are identified under starvation conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Citometría de Flujo/métodos , Genes Reporteros , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo , Proteína Sequestosoma-1
14.
J Biol Chem ; 285(29): 22576-91, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20452972

RESUMEN

The p62/SQSTM1 (sequestosome 1) protein, which acts as a cargo receptor for autophagic degradation of ubiquitinated targets, is up-regulated by various stressors. Induction of the p62 gene by oxidative stress is mediated by NF-E2-related factor 2 (NRF2) and, at the same time, p62 protein contributes to the activation of NRF2, but hitherto the mechanisms involved were not known. Herein, we have mapped an antioxidant response element (ARE) in the p62 promoter that is responsible for its induction by oxidative stress via NRF2. Chromatin immunoprecipitation and gel mobility-shift assays verified that NRF2 binds to this cis-element in vivo and in vitro. Also, p62 docks directly onto the Kelch-repeat domain of Kelch-like ECH-associated protein 1 (KEAP1), via a motif designated the KEAP1 interacting region (KIR), thereby blocking binding between KEAP1 and NRF2 that leads to ubiquitylation and degradation of the transcription factor. The KIR motif in p62 is located immediately C-terminal to the LC3-interacting region (LIR) and resembles the ETGE motif utilized by NRF2 for its interaction with KEAP1. KIR is required for p62 to stabilize NRF2, and inhibition of KEAP1 by p62 occurs from a cytoplasmic location within the cell. The LIR and KIR motifs cannot be engaged simultaneously by LC3 and KEAP1, but because p62 is polymeric the interaction between KEAP1 and p62 leads to accumulation of KEAP1 in p62 bodies, which is followed by autophagic degradation of KEAP1. Our data explain how p62 contributes to activation of NRF2 target genes in response to oxidative stress through creating a positive feedback loop.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Antioxidantes/metabolismo , Retroalimentación Fisiológica , Proteínas de Choque Térmico/genética , Factor 2 Relacionado con NF-E2/metabolismo , Elementos de Respuesta/genética , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Autofagia , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Regulación de la Expresión Génica , Células HeLa , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteína Sequestosoma-1 , Transducción de Señal/genética
15.
Autophagy ; 6(3): 330-44, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20168092

RESUMEN

Accumulation of ubiquitinated proteins in cytoplasmic and/or nuclear inclusions is a hallmark of several diseases associated with premature cell death. SQSTM1/p62 is known to bind ubiquitinated substrates and aid their aggregation and degradation by macroautophagy. We show here that p62 is required to recruit the large phosphoinositide-binding protein ALFY to cytoplasmic p62 bodies generated upon amino acid starvation or puromycin-treatment. ALFY, as well as p62, is required for formation and autophagic degradation of cytoplasmic ubiquitin-positive inclusions. Moreover, both p62 and ALFY localize to nuclear promyleocytic leukemia (PML) bodies. The Drosophila p62 homologue Ref(2) P accumulates in ubiquitinated inclusions in the brain of flies carrying mutations in the ALFY homologue Blue cheese, demonstrating that ALFY is required for autophagic degradation of p62-associated ubiquitinated proteins in vivo. We conclude that p62 and ALFY interact to organize misfolded, ubiquitinated proteins into protein bodies that become degraded by autophagy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/fisiología , Cuerpos de Inclusión/metabolismo , Proteínas de la Membrana/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Relacionadas con la Autofagia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inhibidores Enzimáticos/metabolismo , Células HeLa , Humanos , Macrólidos/metabolismo , Proteínas de la Membrana/genética , Complejos Multiproteicos/metabolismo , Pliegue de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína Sequestosoma-1 , Factores de Transcripción/genética , Proteínas Ubiquitinadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA