Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 469: 133915, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452669

RESUMEN

Neonicotinoids are widely used insecticides that have raised considerable concerns for both environmental and human health. However, there lack of comprehensive evaluation of their accumulation in surface water ecosystems and exposure to various human groups. Additionally, there's a distinct lack of scientific evidence describing the carcinogenic and non-carcinogenic impacts of neonicotinoids from surface water. Using an integrated approach employing the Relative Potency Factor (RPF), Hazard Index (HI), and Monte Carlo Simulation (MCS), the study assessed neonicotinoid exposure and risk to four demographic groups via dermal contact and mistaken oral intake pathways in the Yangtze River Basin (YRB), China. Neonicotinoid concentrations range from 0.1 to 408.12 ng/L, indicating potential risk (10-3 to 10-1) across the studied demographic groups. The Incremental Lifetime Cancer Risk (ILCR) for dermal contact was within a moderate range of 2.00 × 10-3 to 1.67 × 10-2, while the mistaken oral intake was also within a moderate range of 3.07 × 10-3 to 7.05 × 10-3. The Hazard Index (HI) for dermal exposure ranged from 1.49 × 10-2 to 0.125, while for mistaken oral intake, it varied between 2.69 × 10-2 and 0.14. The findings highlight the importance of implementing specific interventions to address neonicotinoid exposure, especially among demographic groups that are more susceptible. This research underscores the urgent need for targeted strategies to address neonicotinoid risks to vulnerable populations within the YRB while contributing to insights for effective policies to mitigate neonicotinoid exposure in surface water ecosystems globally.


Asunto(s)
Insecticidas , Contaminantes Químicos del Agua , Humanos , Insecticidas/toxicidad , Insecticidas/análisis , Agua , Ríos , Ecosistema , Neonicotinoides/toxicidad , China , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
2.
Chemosphere ; 351: 141254, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272140

RESUMEN

Neonicotinoids (NNIs) constitute commonly used pesticides across various regions, however, the lack of research and data on its long-term effects and threshold levels within specific ecosystems have left an important knowledge gap. This study aimed to comprehensively examine NNI concentrations and their potential impacts on human health and aquatic organisms in the region of the Yangtze River Basin (YRB). The study employed datasets on seven commonly applied NNIs across 244 surface water samples collected from 12 distinct geographic sites within the YRB. The relative potency factor was used to evaluate human exposure risks, while the species sensitivity distribution could estimate acute and chronic hazardous concentrations for 5% of species (HC5) for NNIs impacting aquatic organisms. Analysis revealed varying NNI concentrations across the sampled sites, with thiacloprid recording the lowest concentration at 0.1 ng L-1, and dinotefuran recording a high concentration of 408 ng L-1. The observation indicated NNI concentration declined at sampling sites downstream of the YRB. Infants were identified as the most vulnerable to NNI exposure, with an estimated daily intake of 40.8 ng kg-1 bw d-1. The acute HC5 was determined at 946 ng L-1 and a chronic HC5 at 338 ng L-1, to NNI hazards. These findings highlight the urgent need for a more comprehensive understanding of the ecological implications and hazards posed by NNIs within the YRB. Variations in NNI concentrations across sites, potential risks to human health, and increased vulnerability of aquatic organisms from this study underscore the necessity for further research and concerted efforts to mitigate these ecological threats in the region.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Humanos , Ecosistema , Neonicotinoides/análisis , Plaguicidas/análisis , China , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos , Medición de Riesgo , Monitoreo del Ambiente
3.
R Soc Open Sci ; 10(1): 220442, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36686552

RESUMEN

Bioremediation has been used as an environmentally-friendly, energy-saving and efficient method for removing pollutants. However, there have been very few studies focusing on the specific antibiotic-degrading microorganisms in the activated sludge and their degradation mechanism. Two strains of cefalexin-degrading bacteria (Rhizobium sp. (CLX-2) and Klebsiella sp. (CLX-3)) were isolated from the activated sludge in this study. They were capable of rapidly eliminating over 99% of cefalexin at an initial concentration of 10 mg l-1 within 12 h. The exponential phase of cefalexin degradation happened a little earlier than that of bacterial growth. The first-order kinetic model could elucidate the biodegradation process of cefalexin. The optimized environmental temperature and pH values for rapid biodegradation by these two strains were found to be 30°C and 6.5-7, respectively. Furthermore, two major biodegradation metabolites of CLX-3, 7-amino-3-cephem-4-carboxylic acid and 2-hydroxy-3-phenyl pyrazine were identified using UHPLC-MS and the biodegradation pathway of cefalexin was proposed. Overall, the results showed that Rhizobium sp. (CLX-2) and Klebsiella sp. (CLX-3) could possibly be useful resources for antibiotic pollution remediation.

5.
Chemosphere ; 293: 133526, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34998847

RESUMEN

Cu-Zn-Fe Layered double hydroxides (LDH) and LDH dispersed on bamboo biochar (LDHBC) was used to study the adsorption of Atrazine by characterizing the adsorption kinetics, isotherms and response surface methodology (RSM) to reveal interactive effects of pH, adsorbent dosage and adsorbate initial concentration towards LDH optimum performance. The estimate of parameters determined for Langmuir isotherm quantities were in the range (21.84-37.91 mg/g) for LDH and (63.64-87.04 mg/g) for LDHBC. Regeneration and reusability after five cycles detected that the adsorption efficiencies of the adsorbents were reduced to 36% for LDH and 66% for LDHBC. Box Behnken design analysis could further reveal optimized conditions for higher Atrazine removal by LDH up to 74.8%. The adsorption mechanisms could be determined by π-π interactions occurring at the interfaces by hydrogen bonding and pore filling effects.


Asunto(s)
Atrazina , Sasa , Contaminantes Químicos del Agua , Adsorción , Atrazina/análisis , Carbón Orgánico , Concentración de Iones de Hidrógeno , Hidróxidos/química , Cinética , Contaminantes Químicos del Agua/análisis , Zinc/análisis
6.
RSC Adv ; 11(41): 25122-25140, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35478915

RESUMEN

Pesticides are commonly applied in agriculture to protect crops from pests, weeds, and harmful pathogens. However, chronic, low-level exposure to pesticides can be toxic to humans. Photochemical degradation of pesticides in water, soil, and other environmental media can alter their environmental fate and toxicity. Compound-specific isotope analysis (CSIA) is an advanced diagnostic tool to quantify the degradation of organic pollutants and provide insight into reaction mechanisms without the need to identify transformation products. CSIA allows for the direct quantification of organic degradation, including pesticides. This review summarizes the recent developments observed in photodegradation studies on different categories of pesticides using CSIA technology. Only seven pesticides have been studied using photodegradation, and these studies have mostly occurred in the last five years. Knowledge gaps in the current literature, as well as potential approaches for CSIA technology for pesticide monitoring, are discussed in this review. Furthermore, the CSIA analytical method is challenged by chemical element types, the accuracy of instrument analysis, reaction conditions, and the stability of degradation products. Finally, future research applications and the operability of this method are also discussed.

7.
Materials (Basel) ; 13(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003433

RESUMEN

Development of low-cost contaminant sorbents from industrial waste is now an essential aspect of the circular economy since their disposal continues to threaten ecological integrity. Semicoke (SC), a by-product generated in large quantities and described as solid waste from gasification of low-rank coal (LRC), is gaining popularity in line with its reuse capacity in the energy industry but is less explored as a contaminant adsorbent despite its physical and elemental carbon properties. This paper summarizes recent information on SC, sources and production, adsorption mechanism of polluting contaminants, and summarizes regeneration methods capable of yielding sustainability for the material reuse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA