Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Pharmacol Res Perspect ; 12(4): e1229, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38965070

RESUMEN

The risk of a terrorist attack in the United States has created challenges on how to effectively treat toxicities that result from exposure to chemical weapons. To address this concern, the United States has organized a trans-agency initiative across academia, government, and industry to identify drugs to treat tissue injury resulting from exposure to chemical threat agents. We sought to develop and evaluate an interactive educational session that provides hands-on instruction on how to repurpose FDA-approved drugs as therapeutics to treat toxicity from exposure to chemical weapons. As part of the Rutgers Summer Undergraduate Research Fellowship program, 23 undergraduate students participated in a 2-h session that included: (1) an overview of chemical weapon toxicities, (2) a primer on pharmacology principles, and (3) an interactive session where groups of students were provided lists of FDA-approved drugs to evaluate potential mechanisms of action and suitability as countermeasures for four chemical weapon case scenarios. The interactive session culminated in a competition for the best grant "sales pitch." From this interactive training, students improved their understanding of (1) the ability of chemical weapons to cause long-term toxicities, (2) impact of route of administration and exposure scenario on drug efficacy, and (3) re-purposing FDA-approved drugs to treat disease from chemical weapon exposure. These findings demonstrated that an interactive training exercise can provide students with new insights into drug development for chemical threat agent toxicities.


Asunto(s)
Sustancias para la Guerra Química , Reposicionamiento de Medicamentos , United States Food and Drug Administration , Humanos , Estados Unidos , Sustancias para la Guerra Química/toxicidad , Aprobación de Drogas , Estudiantes
2.
Toxicol Sci ; 201(1): 103-117, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897669

RESUMEN

Macrophages play a key role in ozone-induced lung injury by regulating both the initiation and resolution of inflammation. These distinct activities are mediated by pro-inflammatory and anti-inflammatory/proresolution macrophages which sequentially accumulate in injured tissues. Macrophage activation is dependent, in part, on intracellular metabolism. Herein, we used RNA-sequencing (seq) to identify signaling pathways regulating macrophage immunometabolic activity following exposure of mice to ozone (0.8 ppm, 3 h) or air control. Analysis of lung macrophages using an Agilent Seahorse showed that inhalation of ozone increased macrophage glycolytic activity and oxidative phosphorylation at 24 and 72 h post-exposure. An increase in the percentage of macrophages in S phase of the cell cycle was observed 24 h post ozone. RNA-seq revealed significant enrichment of pathways involved in innate immune signaling and cytokine production among differentially expressed genes at both 24 and 72 h after ozone, whereas pathways involved in cell cycle regulation were upregulated at 24 h and intracellular metabolism at 72 h. An interaction network analysis identified tumor suppressor 53 (TP53), E2F family of transcription factors (E2Fs), cyclin-dependent kinase inhibitor 1A (CDKN1a/p21), and cyclin D1 (CCND1) as upstream regulators of cell cycle pathways at 24 h and TP53, nuclear receptor subfamily 4 group a member 1 (NR4A1/Nur77), and estrogen receptor alpha (ESR1/ERα) as central upstream regulators of mitochondrial respiration pathways at 72 h. To assess whether ERα regulates metabolic activity, we used ERα-/- mice. In both air and ozone-exposed mice, loss of ERα resulted in increases in glycolytic capacity and glycolytic reserve in lung macrophages with no effect on mitochondrial oxidative phosphorylation. Taken together, these results highlight the complex interaction between cell cycle, intracellular metabolism, and macrophage activation which may be important in the initiation and resolution of inflammation following ozone exposure.


Asunto(s)
Macrófagos Alveolares , Ratones Endogámicos C57BL , Ozono , Transducción de Señal , Animales , Ozono/toxicidad , Transducción de Señal/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Ratones , Masculino , Activación de Macrófagos/efectos de los fármacos , Perfilación de la Expresión Génica , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/inmunología , Transcriptoma/efectos de los fármacos , Glucólisis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos
3.
Toxicol Sci ; 200(2): 299-311, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749002

RESUMEN

Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.


Asunto(s)
Modelos Animales de Enfermedad , Endotoxemia , Lipopolisacáridos , Estrés Oxidativo , Ozono , Animales , Ozono/toxicidad , Estrés Oxidativo/efectos de los fármacos , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Ratones , Ratones Endogámicos C57BL , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Inflamación/inducido químicamente , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo
4.
Toxicol Appl Pharmacol ; 486: 116941, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677601

RESUMEN

Nitrogen mustard (NM; mechlorethamine) is a cytotoxic vesicant known to cause acute lung injury which can progress to chronic disease. Due to the complex nature of NM injury, it has been difficult to analyze early responses of resident lung cells that initiate inflammation and disease progression. To investigate this, we developed a model of acute NM toxicity using murine precision cut lung slices (PCLS), which contain all resident lung cell populations. PCLS were exposed to NM (1-100 µM) for 0.5-3 h and analyzed 1 and 3 d later. NM caused a dose-dependent increase in cytotoxicity and a reduction in metabolic activity, as measured by LDH release and WST-1 activity, respectively. Optimal responses were observed with 50 µM NM after 1 h incubation and these conditions were used in further experiments. Analysis of PCLS bioenergetics using an Agilent Seahorse showed that NM impaired both glycolytic activity and mitochondrial respiration. This was associated with injury to the bronchial epithelium and a reduction in methacholine-induced airway contraction. NM was also found to cause DNA damage in bronchial epithelial cells in PCLS, as measured by expression of γ-H2AX, and to induce oxidative stress, which was evident by a reduction in glutathione levels and upregulation of the antioxidant enzyme catalase. Cleaved caspase-3 was also upregulated in airway smooth muscle cells indicating apoptotic cell death. Characterizing early events in NM toxicity is key in identifying therapeutic targets for the development of efficacious countermeasures.


Asunto(s)
Pulmón , Mecloretamina , Animales , Mecloretamina/toxicidad , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Ratones , Daño del ADN , Ratones Endogámicos C57BL , Relación Dosis-Respuesta a Droga , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Sustancias para la Guerra Química/toxicidad , Glucólisis/efectos de los fármacos , Masculino , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología
5.
Pharmaceutics ; 16(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675132

RESUMEN

NDH-4338 is a highly lipophilic prodrug comprising indomethacin and an acetylcholinesterase inhibitor. A design of experiments approach was used to synthesize, characterize, and evaluate the wound healing efficacy of optimized NDH-4338 nanosuspensions against nitrogen mustard-induced skin injury. Nanosuspensions were prepared by sonoprecipitation in the presence of a Vitamin E TPGS aqueous stabilizer solution. Critical processing parameters and material attributes were optimized to reduce particle size and determine the effect on dissolution rate and burn healing efficacy. The antisolvent/solvent ratio (A/S), dose concentration (DC), and drug/stabilizer ratio (D/S) were the critical sonoprecipitation factors that control particle size. These factors were subjected to a Box-Behnken design and response surface analysis, and model quality was assessed. Maximize desirability and simulation experiment optimization approaches were used to determine nanosuspension parameters with the smallest size and the lowest defect rate within the 10-50 nm specification limits. Optimized and unoptimized nanosuspensions were prepared and characterized. An established depilatory double-disc mouse model was used to evaluate the healing of nitrogen mustard-induced dermal injuries. Optimized nanosuspensions (A/S = 6.2, DC = 2% w/v, D/S = 2.8) achieved a particle size of 31.46 nm with a narrow size range (PDI = 0.110) and a reduced defect rate (42.2 to 6.1%). The optimized nanosuspensions were stable and re-dispersible, and they showed a ~45% increase in cumulative drug release and significant edema reduction in mice. Optimized NDH-4338 nanosuspensions were smaller with more uniform sizes that led to improved physical stability, faster dissolution, and enhanced burn healing efficacy compared to unoptimized nanosuspensions.

6.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513841

RESUMEN

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Asunto(s)
Acetilcisteína , Metabolismo Energético , Lesión Pulmonar , Mecloretamina , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Mecloretamina/toxicidad , Masculino , Metabolismo Energético/efectos de los fármacos , Ratas , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratas Sprague-Dawley , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Sustancias para la Guerra Química/toxicidad
7.
J Pharmacol Exp Ther ; 388(2): 586-595, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37188530

RESUMEN

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.


Asunto(s)
Ácido Quenodesoxicólico/análogos & derivados , Lesión Pulmonar , Mecloretamina , Ratas , Masculino , Animales , Mecloretamina/toxicidad , Irritantes/efectos adversos , Ratas Wistar , Pulmón , Fibrosis , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/patología , Lesión Pulmonar/metabolismo , Estrés Oxidativo , Lípidos
8.
Disaster Med Public Health Prep ; 17: e553, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37848400

RESUMEN

Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA damage, oxidative stress, and inflammation. This is associated with increases in levels of inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue remodeling. These findings suggest that targeting production of TNFα or TNFα activity may represent an efficacious approach to mitigating lung toxicity induced by both mustards and radiation. This review summarizes current knowledge on the role of TNFα in pathologies associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis.


Asunto(s)
Lesión Pulmonar , Humanos , Inflamación , Irritantes/toxicidad , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Planta de la Mostaza , Factor de Necrosis Tumoral alfa/metabolismo
9.
Disaster Med Public Health Prep ; 17: e551, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37849329

RESUMEN

Sulfur mustard (SM) is a threat to both civilian and military populations. Human skin is highly sensitive to SM, causing delayed erythema, edema, and inflammatory cell infiltration, followed by the appearance of large fluid-filled blisters. Skin wound repair is prolonged following blistering, which can result in impaired barrier function. Key to understanding the action of SM in the skin is the development of animal models that have a pathophysiology comparable to humans such that quantitative assessments of therapeutic drugs efficacy can be assessed. Two animal models, hairless guinea pigs and swine, are preferred to evaluate dermal products because their skin is morphologically similar to human skin. In these animal models, SM induces degradation of epidermal and dermal tissues but does not induce overt blistering, only microblistering. Mechanisms of wound healing are distinct in these animal models. Whereas a guinea pig heals by contraction, swine skin, like humans, heals by re-epithelialization. Mice, rats, and rabbits are also used for SM mechanistic studies. However, healing is also mediated by contraction; moreover, only microblistering is observed. Improvements in animal models are essential for the development of therapeutics to mitigate toxicity resulting from dermal exposure to SM.


Asunto(s)
Gas Mostaza , Humanos , Ratones , Ratas , Animales , Cobayas , Conejos , Gas Mostaza/toxicidad , Piel
10.
Toxicol Sci ; 194(1): 109-119, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37202362

RESUMEN

Exposure to ozone causes decrements in pulmonary function, a response associated with alterations in lung lipids. Pulmonary lipid homeostasis is dependent on the activity of peroxisome proliferator activated receptor gamma (PPARγ), a nuclear receptor that regulates lipid uptake and catabolism by alveolar macrophages (AMs). Herein, we assessed the role of PPARγ in ozone-induced dyslipidemia and aberrant lung function in mice. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in a significant reduction in lung hysteresivity at 72 h post exposure; this correlated with increases in levels of total phospholipids, specifically cholesteryl esters, ceramides, phosphatidylcholines, phosphorylethanolamines, sphingomyelins, and di- and triacylglycerols in lung lining fluid. This was accompanied by a reduction in relative surfactant protein-B (SP-B) content, consistent with surfactant dysfunction. Administration of the PPARγ agonist, rosiglitazone (5 mg/kg/day, i.p.) reduced total lung lipids, increased relative amounts of SP-B, and normalized pulmonary function in ozone-exposed mice. This was associated with increases in lung macrophage expression of CD36, a scavenger receptor important in lipid uptake and a transcriptional target of PPARγ. These findings highlight the role of alveolar lipids as regulators of surfactant activity and pulmonary function following ozone exposure and suggest that targeting lipid uptake by lung macrophages may be an efficacious approach for treating altered respiratory mechanics.


Asunto(s)
Dislipidemias , Ozono , Ratones , Animales , PPAR gamma/metabolismo , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Ozono/toxicidad , Fosfolípidos/metabolismo , Tensoactivos , Dislipidemias/inducido químicamente , Dislipidemias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA