Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Immunol ; 25(5): 847-859, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658806

RESUMEN

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Asunto(s)
Homeostasis , Quinasas Janus , Macrófagos , Ratones Noqueados , Factores de Transcripción STAT , Transducción de Señal , Animales , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Ratones Endogámicos C57BL , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , TYK2 Quinasa/metabolismo , TYK2 Quinasa/genética , Regulación de la Expresión Génica
2.
PLoS One ; 18(9): e0286256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37713409

RESUMEN

FAM3C/ILEI is an important factor in epithelial-to-mesenchymal transition (EMT) induction, tumor progression and metastasis. Overexpressed in many cancers, elevated ILEI levels and secretion correlate with poor patient survival. Although ILEI's causative role in invasive tumor growth and metastasis has been demonstrated in several cellular tumor models, there are no available transgenic mice to study these effects in the context of a complex organism. Here, we describe the generation and initial characterization of a Tet-ON inducible Fam3c/ILEI transgenic mouse strain. We find that ubiquitous induction of ILEI overexpression (R26-ILEIind) at weaning age leads to a shortened lifespan, reduced body weight and microcytic hypochromic anemia. The anemia was reversible at a young age within a week upon withdrawal of ILEI induction. Vav1-driven overexpression of the ILEIind transgene in all hematopoietic cells (Vav-ILEIind) did not render mice anemic or lower overall fitness, demonstrating that no intrinsic mechanisms of erythroid development were dysregulated by ILEI and that hematopoietic ILEI hyperfunction did not contribute to death. Reduced serum iron levels of R26-ILEIind mice were indicative for a malfunction in iron uptake or homeostasis. Accordingly, the liver, the main organ of iron metabolism, was severely affected in moribund ILEI overexpressing mice: increased alanine transaminase and aspartate aminotransferase levels indicated liver dysfunction, the liver was reduced in size, showed increased apoptosis, reduced cellular iron content, and had a fibrotic phenotype. These data indicate that high ILEI expression in the liver might reduce hepatoprotection and induce liver fibrosis, which leads to liver dysfunction, disturbed iron metabolism and eventually to death. Overall, we show here that the novel Tet-ON inducible Fam3c/ILEI transgenic mouse strain allows tissue specific timely controlled overexpression of ILEI and thus, will serve as a versatile tool to model the effect of elevated ILEI expression in diverse tissue entities and disease conditions, including cancer.


Asunto(s)
Anemia , Longevidad , Ratones , Animales , Longevidad/genética , Cirrosis Hepática/genética , Anemia/genética , Hierro , Ratones Transgénicos
3.
Blood ; 141(23): 2878-2890, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37018657

RESUMEN

Iron is an essential cellular metal that is important for many physiological functions including erythropoiesis and host defense. It is absorbed from the diet in the duodenum and loaded onto transferrin (Tf), the main iron transport protein. Inefficient dietary iron uptake promotes many diseases, but mechanisms regulating iron absorption remain poorly understood. By assessing mice that harbor a macrophage-specific deletion of the tuberous sclerosis complex 2 (Tsc2), a negative regulator of mechanistic target of rapamycin complex 1 (mTORC1), we found that these mice possessed various defects in iron metabolism, including defective steady-state erythropoiesis and a reduced saturation of Tf with iron. This iron deficiency phenotype was associated with an iron import block from the duodenal epithelial cells into the circulation. Activation of mTORC1 in villous duodenal CD68+ macrophages induced serine protease expression and promoted local degradation of Tf, whereas the depletion of macrophages in mice increased Tf levels. Inhibition of mTORC1 with everolimus or serine protease activity with nafamostat restored Tf levels and Tf saturation in the Tsc2-deficient mice. Physiologically, Tf levels were regulated in the duodenum during the prandial process and Citrobacter rodentium infection. These data suggest that duodenal macrophages determine iron transfer to the circulation by controlling Tf availability in the lamina propria villi.


Asunto(s)
Hierro de la Dieta , Transferrina , Ratones , Animales , Transferrina/metabolismo , Hierro de la Dieta/metabolismo , Hierro/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Dieta , Duodeno/metabolismo , Receptores de Transferrina/metabolismo
4.
Haematologica ; 108(4): 993-1005, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35021603

RESUMEN

Tyrosine kinase 2 (TYK2) is a member of the Janus kinase/signal transducer and activator of transcription pathway, which is central in cytokine signaling. Previously, germline TYK2 mutations have been described in two patients developing de novo T-cell acute lymphoblastic leukemias (T-ALL) or precursor B-ALL. The mutations (P760L and G761V) are located within the regulatory pseudokinase domain and lead to constitutive activation of TYK2. We demonstrate the transformation capacity of TYK2 P760L in hematopoietic cell systems including primary bone marrow cells. In vivo engraftment of TYK2 P760L-expressing cell lines led to development of leukemia. A kinase inhibitor screen uncovered that oncogenic TYK2 acts synergistically with the PI3K/AKT/mTOR and CDK4/6 pathways. Accordingly, the TYK2-specific inhibitor deucravacitinib (BMS986165) reduces cell viability of TYK2 P760L-transformed cell models and ex vivo cultured TYK2 P760L-mutated patient- derived xenograft cells most efficiently when combined with mTOR or CDK4/6 inhibitors. Our study thereby pioneers novel treatment options for patients suffering from TYK2-driven acute leukemia.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , TYK2 Quinasa , Humanos , Línea Celular , Quinasa 4 Dependiente de la Ciclina , Fosfatidilinositol 3-Quinasas , Serina-Treonina Quinasas TOR , TYK2 Quinasa/genética , TYK2 Quinasa/metabolismo
5.
Animals (Basel) ; 12(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36009730

RESUMEN

Ambient temperature is an important non-biotic environmental factor influencing immunological and oncological parameters in laboratory mice. It is under discussion which temperature is more appropriate and whether the commonly used room temperature in rodent facilities of about 21 °C represents a chronic cold stress or the 30 °C of the thermoneutral zone constitutes heat stress for the animals. In this study, we selected the physiological challenging period of lactation to investigate the influence of a cage temperature of 20 °C, 25 °C, and 30 °C, respectively, on reproductive performance and stress hormone levels in two frequently used mouse strains. We found that B6D2F1 hybrid mothers weaned more pups compared to C57BL/6N mothers, and that the number of weaned pups was reduced when mothers of both strains were kept at 30 °C. Furthermore, at 30 °C, mothers and pups showed reduced body weight at weaning and offspring had longer tails. Despite pronounced temperature effects on reproductive parameters, we did not find any temperature effects on adrenocortical activity in breeding and control mice. Independent of the ambient temperature, however, we found that females raising pups showed elevated levels of faecal corticosterone metabolites (FCMs) compared to controls. Peak levels of stress hormone metabolites were measured around birth and during the third week of lactation. Our results provide no evidence of an advantage for keeping lactating mice in ambient temperatures near the thermoneutral zone. In contrast, we found that a 30 °C cage temperature during lactation reduced body mass in females and their offspring and declined female reproductive performance.

6.
Mucosal Immunol ; 15(5): 896-907, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35856089

RESUMEN

Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs), tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity. Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response, characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.


Asunto(s)
Interferón Tipo I , Macrófagos Alveolares , Interferón Tipo I/metabolismo , Lipopolisacáridos , Pulmón , Transducción de Señal
7.
PLoS Pathog ; 17(7): e1009697, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34237114

RESUMEN

Listeria monocytogenes (L. monocytogenes) is a food-borne bacterial pathogen. Innate immunity to L. monocytogenes is profoundly affected by type I interferons (IFN-I). Here we investigated host metabolism in L. monocytogenes-infected mice and its potential control by IFN-I. Accordingly, we used animals lacking either the IFN-I receptor (IFNAR) or IRF9, a subunit of ISGF3, the master regulator of IFN-I-induced genes. Transcriptomes and metabolite profiles showed that L. monocytogenes infection induces metabolic rewiring of the liver. This affects various metabolic pathways including fatty acid (FA) metabolism and oxidative phosphorylation and is partially dependent on IFN-I signaling. Livers and macrophages from Ifnar1-/- mice employ increased glutaminolysis in an IRF9-independent manner, possibly to readjust TCA metabolite levels due to reduced FA oxidation. Moreover, FA oxidation inhibition provides protection from L. monocytogenes infection, explaining part of the protection of Irf9-/- and Ifnar1-/- mice. Our findings define a role of IFN-I in metabolic regulation during L. monocytogenes infection. Metabolic differences between Irf9-/- and Ifnar1-/- mice may underlie the different susceptibility of these mice against lethal infection with L. monocytogenes.


Asunto(s)
Interferón Tipo I/metabolismo , Listeria monocytogenes/metabolismo , Listeriosis/metabolismo , Hígado/metabolismo , Animales , Ácidos Grasos/metabolismo , Interferón Tipo I/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Hígado/inmunología , Ratones , Ratones Endogámicos C57BL
8.
Cell Death Differ ; 28(2): 748-763, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32929218

RESUMEN

The non-canonical inflammasome is an emerging crucial player in the development of inflammatory and neurodegenerative diseases. It is activated by direct sensing of cytosolic lipopolysaccharide (LPS) by caspase-11 (CASP11), which then induces pyroptosis, an inflammatory form of regulated cell death. Here, we report that tyrosine kinase 2 (TYK2), a cytokine receptor-associated kinase, is a critical upstream regulator of CASP11. Absence of TYK2 or its kinase activity impairs the transcriptional induction of CASP11 in vitro and in vivo and protects mice from LPS-induced lethality. Lack of TYK2 or its enzymatic activity inhibits macrophage pyroptosis and impairs release of mature IL-1ß and IL-18 specifically in response to intracellular LPS. Deletion of TYK2 in myeloid cells reduces LPS-induced IL-1ß and IL-18 production in vivo, highlighting the importance of these cells in the inflammatory response to LPS. In support of our data generated with genetically engineered mice, pharmacological inhibition of TYK2 reduced LPS-induced upregulation of CASP11 in bone marrow-derived macrophages (BMDMs) and of its homolog CASP5 in human macrophages. Our study provides insights into the regulation of CASP11 in vivo and uncovered a novel link between TYK2 activity and CASP11-dependent inflammation.


Asunto(s)
Caspasas Iniciadoras/metabolismo , Inflamasomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Piroptosis/efectos de los fármacos , TYK2 Quinasa/farmacología , Animales , Endotoxemia/tratamiento farmacológico , Femenino , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Células U937
9.
Front Immunol ; 11: 2189, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042133

RESUMEN

Natural killer (NK) cells are important components of the innate immune defense against infections and cancers. Signal transducer and activator of transcription 1 (STAT1) is a transcription factor that is essential for NK cell maturation and NK cell-dependent tumor surveillance. Two alternatively spliced isoforms of STAT1 exist: a full-length STAT1α and a C-terminally truncated STAT1ß isoform. Aberrant splicing is frequently observed in cancer cells and several anti-cancer drugs interfere with the cellular splicing machinery. To investigate whether NK cell-mediated tumor surveillance is affected by a switch in STAT1 splicing, we made use of knock-in mice expressing either only the STAT1α (Stat1α/α) or the STAT1ß (Stat1ß/ß ) isoform. NK cells from Stat1α/α mice matured normally and controlled transplanted tumor cells as efficiently as NK cells from wild-type mice. In contrast, NK cells from Stat1ß/ß mice showed impaired maturation and effector functions, albeit less severe than NK cells from mice that completely lack STAT1 (Stat1-/- ). Mechanistically, we show that NK cell maturation requires the presence of STAT1α in the niche rather than in NK cells themselves and that NK cell maturation depends on IFNγ signaling under homeostatic conditions. The impaired NK cell maturation in Stat1ß/ß mice was paralleled by decreased IL-15 receptor alpha (IL-15Rα) surface levels on dendritic cells, macrophages and monocytes. Treatment of Stat1ß/ß mice with exogenous IL-15/IL-15Rα complexes rescued NK cell maturation but not their effector functions. Collectively, our findings provide evidence that STAT1 isoforms are not functionally redundant in regulating NK cell activity and that the absence of STAT1α severely impairs, but does not abolish, NK cell-dependent tumor surveillance.


Asunto(s)
Células Asesinas Naturales/citología , Linfopoyesis/fisiología , Factor de Transcripción STAT1/inmunología , Animales , Trasplante de Médula Ósea , Línea Celular Tumoral , Citotoxicidad Inmunológica , Vigilancia Inmunológica/efectos de los fármacos , Vigilancia Inmunológica/inmunología , Factor 3 de Genes Estimulados por el Interferón/deficiencia , Factor 3 de Genes Estimulados por el Interferón/genética , Factor 3 de Genes Estimulados por el Interferón/inmunología , Interleucina-15/farmacología , Subunidad alfa del Receptor de Interleucina-15 , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Depleción Linfocítica , Tejido Linfoide/citología , Linfoma/inmunología , Linfoma/patología , Linfopoyesis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Receptores de Interferón/deficiencia , Factor de Transcripción STAT1/deficiencia , Factor de Transcripción STAT1/genética , Organismos Libres de Patógenos Específicos , Bazo/citología , Receptor de Interferón gamma
10.
Front Microbiol ; 10: 1644, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396177

RESUMEN

The pathogenicity of the human foodborne pathogen Listeria monocytogenes relies on virulence factors such as internalins. In 2009/2010 two L. monocytogenes strains were responsible for a serious listeriosis outbreak in Austria, Germany, and the Czech Republic. One of these clones, QOC1, which caused 14 cases including five fatalities, encodes the novel internalins inlP1, inlPq and inlP4, and the novel internalin-like protein inlP3 in the genomic region of hypervariable genetic hotspot 9 in addition to the standard set of virulence genes. The in silico prevalence study revealed that these genes rarely occur in L. monocytogenes, mainly in minor clonal complexes. To obtain first insights of the role of these genes in the pathogenicity of L. monocytogenes, we studied the gene expression under conditions mimicking the ingestion in the host. Expression of inlP1, inlP3, inlPq and inlP4 was increased under gastric stress and in intracellular bacteria grown in intestinal epithelial cells. Furthermore, colonization of the liver and the spleen was slightly, but significantly reduced 72 h post infection in an oral mouse infection model when inlP1 or inlP4 was deleted. Moreover, the impact of InlP1 and InlP3 in virulence was shown in vitro in human intestinal epithelial cells. In this study we conclusively demonstrate a potential contribution of uncommon novel internalins and an internalin-like protein to the pathogenicity of L. monocytogenes.

11.
J Immunol ; 202(6): 1724-1734, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30718299

RESUMEN

Tyrosine kinase 2 (TYK2) is a widely expressed receptor-associated kinase that is involved in signaling by a variety of cytokines with important immune regulatory activities. Absence of TYK2 in mice results in impaired NK cell maturation and antitumor activity, although underlying mechanisms are largely unknown. Using conditional ablation of TYK2 in NK cells we show that TYK2 is required for IFN-γ production by NK cells in response to IL-12 and for an efficient immune defense against Listeria monocytogenes Deletion of TYK2 in NK cells did not impact NK cell maturation and IFN-γ production upon NK cell activating receptor (actR) stimulation. Similarly, NK cell-mediated tumor surveillance was unimpaired upon deletion of TYK2 in NK cells only. In line with the previously reported maturation-associated Ifng promoter demethylation, the less mature phenotype of Tyk2-/- NK cells correlated with an increased CpG methylation at the Ifng locus. Treatment with the DNA hypomethylating agent 5-aza-2-deoxycytidine restored the ability of Tyk2-/- NK cells to produce IFN-γ upon actR but not upon IL-12 stimulation. NK cell maturation was dependent on the presence of TYK2 in dendritic cells and could be rescued in Tyk2-deficient mice by treatment with exogenous IL-15/IL-15Rα complexes. IL-15 treatment also rescued the in vitro cytotoxicity defect and the impaired actR-induced IFN-γ production of Tyk2-/- NK cells. Collectively, our findings provide the first evidence, to our knowledge, for a key role of TYK2 in the host environment in promoting NK cell maturation and antitumor activity.


Asunto(s)
Infecciones Bacterianas/inmunología , Inmunidad Innata/inmunología , Vigilancia Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Neoplasias/inmunología , TYK2 Quinasa/inmunología , Animales , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados
12.
Cell Rep ; 26(9): 2394-2406.e5, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811989

RESUMEN

Cytomegalovirus (CMV) has a high prevalence worldwide, is often fatal for immunocompromised patients, and causes bone marrow suppression. Deficiency of signal transducer and activator of transcription 1 (STAT1) results in severely impaired antiviral immunity. We have used cell-type restricted deletion of Stat1 to determine the importance of myeloid cell activity for the defense against murine CMV (MCMV). We show that myeloid STAT1 limits MCMV burden and infection-associated pathology in the spleen but does not affect ultimate clearance of infection. Unexpectedly, we found an essential role of myeloid STAT1 in the induction of extramedullary hematopoiesis (EMH). The EMH-promoting function of STAT1 was not restricted to MCMV infection but was also observed during CpG oligodeoxynucleotide-induced sterile inflammation. Collectively, we provide genetic evidence that signaling through STAT1 in myeloid cells is required to restrict MCMV at early time points post-infection and to induce compensatory hematopoiesis in the spleen.


Asunto(s)
Hematopoyesis Extramedular , Infecciones por Herpesviridae/fisiopatología , Muromegalovirus , Células Mieloides/fisiología , Factor de Transcripción STAT1/fisiología , Animales , Células Cultivadas , Femenino , Eliminación de Gen , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/metabolismo , Células Asesinas Naturales/inmunología , Masculino , Ratones Endogámicos C57BL , Muromegalovirus/fisiología , Receptor de Interferón alfa y beta/genética , Receptores de Interferón/genética , Receptores de Interleucina/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Bazo/patología , Bazo/virología , Estrés Fisiológico , Replicación Viral
13.
PLoS Pathog ; 14(11): e1007397, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30475900

RESUMEN

DExD/H box RNA helicases, such as the RIG-I-like receptors (RLR), are important components of the innate immune system. Here we demonstrate a pivotal and sex-specific role for the heterosomal isoforms of the DEAD box RNA helicase DDX3 in the immune system. Mice lacking DDX3X during hematopoiesis showed an altered leukocyte composition in bone marrow and spleen and a striking inability to combat infection with Listeria monocytogenes. Alterations in innate immune responses resulted from decreased effector cell availability and function as well as a sex-dependent impairment of cytokine synthesis. Thus, our data provide further in vivo evidence for an essential contribution of a non-RLR DExD/H RNA helicase to innate immunity and suggest it may contribute to sex-related differences in resistance to microbes and resilience to inflammatory disease.


Asunto(s)
Listeriosis/inmunología , ARN Helicasas/inmunología , Animales , ARN Helicasas DEAD-box/metabolismo , Resistencia a la Enfermedad/inmunología , Femenino , Fibroblastos/inmunología , Fibroblastos/patología , Células HEK293 , Hematopoyesis/inmunología , Humanos , Inmunidad Innata , Células Asesinas Naturales/inmunología , Listeria monocytogenes/inmunología , Listeriosis/patología , Linfocitos/inmunología , Masculino , Ratones , Ratones Noqueados , FN-kappa B/inmunología , ARN Helicasas/deficiencia , ARN Helicasas/genética , Factores Sexuales , Transducción de Señal
14.
Int J Food Microbiol ; 279: 64-69, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-29738927

RESUMEN

A cluster of 34 human cases of listeriosis was traced to consumption of contaminated quargel cheese, a sour milk specialty sold in Austria, Germany and Czech Republic. Here, we try to assess how many portions were consumed by the Austrian population at a certain contamination level (CL). In total, 1623 cheese lots were produced during the outbreak period resulting in >3 million portions of cheese delivered to the market. From 650 sets of quality control data provided by the food business operator, we reconstructed the contamination scenario over time and identified 84 lots that were found to be positive. With regard to another sixteen lots, a CL was found ranging from one to 3,84 log10 CFU L. monocytogenes/g, measured in product stored between one to 23 days after production. However the number of storage days at home before consumption is unknown. To resolve this issue, we modelled the theoretical CL of the product if consumed either 20, 30, 40 or 50 days post production. We found that 10 lots (approx. 27,350 portions) would have been contaminated at CLs higher than 3 log10 CFU L. monocytogenes/g if all cheese had been consumed after 20 days of storage. This number shifts to 20 lots (approx. 54,700 portions) after 30 days of storage. If all cheese had been consumed at the end of shelf life (50 days of storage), theoretically 242,5 lots would have exceeded a CL of 6 log10 CFU L. monocytogenes/g. We concluded that the extended shelf life given to the product was a driver of the outbreak scenario. It is stunning to note that so few cases were reported in spite of consumers' massive exposure to L. monocytogenes. We hypothesized that a low pathogenicity of both quargel outbreak clones (QOC1 and QOC2) could have contributed to this discrepancy. Our hypothesis was falsified since both strains QOC1 and QOC2 are fully virulent in an oral infection mouse model, showing even higher pathogenicity than the reference strain EGDe.


Asunto(s)
Queso/microbiología , Brotes de Enfermedades , Contaminación de Alimentos/análisis , Listeria monocytogenes/crecimiento & desarrollo , Listeriosis/epidemiología , Anciano , Anciano de 80 o más Años , Animales , Austria/epidemiología , República Checa/epidemiología , Femenino , Microbiología de Alimentos , Alemania/epidemiología , Humanos , Listeria monocytogenes/aislamiento & purificación , Listeriosis/microbiología , Listeriosis/mortalidad , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Leche/microbiología , Control de Calidad , Estudios Retrospectivos , Virulencia
15.
FASEB J ; 30(6): 2225-35, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26936360

RESUMEN

Antigen-induced mast cell (MC) activation via cross-linking of IgE-bound high-affinity receptors for IgE (FcεRI) underlies type I allergy and anaphylactic shock. Comprehensive knowledge of FcεRI regulation is thus required. We have identified a functional interaction between FcεRI and CD13 in murine MCs. Antigen-triggered activation of IgE-loaded FcεRI results in cocapping and cointernalization of CD13 and equivalent internalization rates of up to 40%. Cointernalization is not unspecific, because ligand-driven KIT internalization is not accompanied by CD13 internalization. Moreover, antibody-mediated cross-linking of CD13 causes IL-6 production in an FcεRI-dependent manner. These data are indicative of a functional interaction between FcεRI and CD13 on MCs. To determine the role of this interaction, CD13-deficient bone marrow-derived MCs (BMMCs) were analyzed. Intriguingly, antigen stimulation of CD13-deficient BMMCs results in significantly increased degranulation and proinflammatory cytokine production compared to wild-type cells. Furthermore, in a low-dose model of passive systemic anaphylaxis, antigen-dependent decrease in body temperature, reflecting the anaphylactic reaction, is substantially enhanced by the CD13 inhibitor bestatin (-5.9 ± 0.6°C) and by CD13 deficiency (-8.8 ± 0.6°C) in contrast to controls (-1.2 ± 1.97°C). Importantly, bestatin does not aggravate anaphylaxis in CD13-deficient mice. Thus, we have identified CD13 as a novel negative regulator of MC activation in vitro and in vivo-Zotz, J. S., Wölbing, F., Lassnig, C., Kauffmann, M., Schulte, U., Kolb, A., Whitelaw, B., Müller, M., Biedermann, T., Huber, M. CD13/aminopeptidase N is a negative regulator of mast cell activation.


Asunto(s)
Antígenos CD13/metabolismo , Mastocitos/fisiología , Anafilaxia , Animales , Antígenos CD13/antagonistas & inhibidores , Antígenos CD13/genética , Proliferación Celular , Dinitrofenoles/inmunología , Regulación de la Expresión Génica/fisiología , Leucina/análogos & derivados , Leucina/farmacología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de IgE/genética , Receptores de IgE/metabolismo , Albúmina Sérica/inmunología
16.
J Immunol ; 195(10): 5011-24, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26432894

RESUMEN

In the intestinal tract, IL-22 activates STAT3 to promote intestinal epithelial cell (IEC) homeostasis and tissue healing. The mechanism has remained obscure, but we demonstrate that IL-22 acts via tyrosine kinase 2 (Tyk2), a member of the Jak family. Using a mouse model for colitis, we show that Tyk2 deficiency is associated with an altered composition of the gut microbiota and exacerbates inflammatory bowel disease. Colitic Tyk2(-/-) mice have less p-STAT3 in colon tissue and their IECs proliferate less efficiently. Tyk2-deficient primary IECs show reduced p-STAT3 in response to IL-22 stimulation, and expression of IL-22-STAT3 target genes is reduced in IECs from healthy and colitic Tyk2(-/-) mice. Experiments with conditional Tyk2(-/-) mice reveal that IEC-specific depletion of Tyk2 aggravates colitis. Disease symptoms can be alleviated by administering high doses of rIL-22-Fc, indicating that Tyk2 deficiency can be rescued via the IL-22 receptor complex. The pivotal function of Tyk2 in IL-22-dependent colitis was confirmed in Citrobacter rodentium-induced disease. Thus, Tyk2 protects against acute colitis in part by amplifying inflammation-induced epithelial IL-22 signaling to STAT3.


Asunto(s)
Colitis/inmunología , Interleucinas/inmunología , Mucosa Intestinal/inmunología , Transducción de Señal/inmunología , TYK2 Quinasa/inmunología , Animales , Citrobacter rodentium/inmunología , Colitis/genética , Colitis/patología , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/patología , Interleucinas/genética , Mucosa Intestinal/patología , Síndrome de Job/genética , Síndrome de Job/inmunología , Síndrome de Job/patología , Ratones , Ratones Noqueados , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Transducción de Señal/genética , TYK2 Quinasa/deficiencia , TYK2 Quinasa/genética , Interleucina-22
17.
Transpl Immunol ; 33(1): 45-50, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26073719

RESUMEN

The mammalian target of rapamycin (mTOR) is a key signaling kinase associated with a variety of cellular functions including the regulation of immunological and inflammatory responses. Classic mTOR inhibitors such as rapamycin or everolimus are commonly used in transplant as well as cancer patients to prevent transplant rejection or cancer progression, respectively. Noninfectious drug-induced pneumonitis is a frequent side effect in mTOR-inhibitor-treated patients. Therefore, we tested the effects of the mTOR inhibitor everolimus and the novel dual PI3K/mTOR inhibitor NVP-BEZ235 in a murine lipopolysaccharide (LPS)-induced acute lung injury model. C57BL/6 mice were treated with either everolimus or NVP-BEZ235 on two consecutive days prior to intratracheal administration of LPS. LPS administration induced a significant increase in total cell, neutrophil and erythrocyte numbers in the bronchoalveolar lavage fluid. Histological examination revealed a serious lung injury as shown by interstitial edema, vascular congestion and mononuclear cell infiltration in these mice after 24h. Everolimus as well as NVP-BEZ235 did not noticeably affect overall histopathology of the lungs in the lung injury model. However, NVP-BEZ235 enhanced IL-6 and TNF-α expression after 24h. In contrast, everolimus did not affect IL-6 and TNF-α levels. Interestingly, both inhibitors reduced inflammatory cytokines in an LPS/oleic acid-induced lung injury model. In conclusion, the mTOR inhibitors did not worsen the overall histopathological severity, but they exerted distinct effects on proinflammatory cytokine expression in the lung depending on the lung injury model applied.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Everolimus/farmacología , Imidazoles/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quinolinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-6/inmunología , Lipopolisacáridos/toxicidad , Ratones , Ácido Oléico/toxicidad , Fosfatidilinositol 3-Quinasas/inmunología , Serina-Treonina Quinasas TOR/inmunología , Factor de Necrosis Tumoral alfa/inmunología
18.
PLoS One ; 9(12): e115959, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25541972

RESUMEN

Bacterial pathogens are known for their wide range of strategies to specifically adapt to host environments and infection sites. An in-depth understanding of these adaptation mechanisms is crucial for the development of effective therapeutics and new prevention measures. In this study, we assessed the suitability of Fourier Transform Infrared (FTIR) spectroscopy for monitoring metabolic adaptations of the bacterial pathogen Listeria monocytogenes to specific host genotypes and for exploring the potential of FTIR spectroscopy to gain novel insights into the host-pathogen interaction. Three different mouse genotypes, showing different susceptibility to L. monocytogenes infections, were challenged with L. monocytogenes and re-isolated bacteria were subjected to FTIR spectroscopy. The bacteria from mice with different survival characteristics showed distinct IR spectral patterns, reflecting specific changes in the backbone conformation and the hydrogen-bonding pattern of the protein secondary structure in the bacterial cell. Coupling FTIR spectroscopy with chemometrics allowed us to link bacterial metabolic fingerprints with host infection susceptibility and to decipher longtime memory effects of the host on the bacteria. After prolonged cultivation of host-passaged bacteria under standard laboratory conditions, the host's imprint on bacterial metabolism vanished, which suggests a revertible metabolic adaptation of bacteria to host environment and loss of host environment triggered memory effects over time. In summary, our work demonstrates the potential and power of FTIR spectroscopy to be used as a fast, simple and highly discriminatory tool to investigate the mechanism of bacterial host adaptation on a macromolar and metabolic level.


Asunto(s)
Interacciones Huésped-Patógeno , Listeria monocytogenes/química , Listeria monocytogenes/fisiología , Listeriosis/genética , Listeriosis/microbiología , Espectroscopía Infrarroja por Transformada de Fourier , Animales , Femenino , Microbiología de Alimentos , Genotipo , Listeriosis/metabolismo , Ratones , Ratones Endogámicos C57BL , Espectroscopía Infrarroja por Transformada de Fourier/métodos
19.
Transgenic Res ; 23(3): 519-29, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24696087

RESUMEN

Tyrosine kinase 2 (TYK2) has a pivotal role in immunity to infection and tumor surveillance. It is associated with several cytokine receptor chains including type I interferon (IFN) receptor 1 (IFNAR1), interleukin- (IL-) 12 receptor beta 1 (IL-12Rb1) and IL-10R2. We have generated a mouse with a conditional Tyk2 null allele and proved integrity of the conditional Tyk2 locus. TYK2 was successfully removed by the use of ubiquitous and tissue-specific Cre-expressing mouse strains. Myeloid TYK2 was found to critically contribute to the defense against murine cytomegalovirus. Ubiquitous TYK2 ablation severely impaired tumor immunosurveillance, while deletion in myeloid, dendritic or T cells alone showed no effect. The conditional Tyk2 mouse strain will be instrumental to further dissect TYK2 functions in infection, inflammation and cancer.


Asunto(s)
Muromegalovirus/genética , Neoplasias/genética , TYK2 Quinasa/genética , Animales , Ratones , Ratones Transgénicos , Muromegalovirus/patogenicidad , Neoplasias/patología , Transducción de Señal/genética , Linfocitos T , TYK2 Quinasa/biosíntesis
20.
Mol Cell Biol ; 34(12): 2235-48, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24710278

RESUMEN

The transcription factor STAT1 is essential for interferon (IFN)-mediated immunity in humans and mice. STAT1 function is tightly regulated, and both loss- and gain-of-function mutations result in severe immune diseases. The two alternatively spliced isoforms, STAT1α and STAT1ß, differ with regard to a C-terminal transactivation domain, which is absent in STAT1ß. STAT1ß is considered to be transcriptionally inactive and to be a competitive inhibitor of STAT1α. To investigate the functions of the STAT1 isoforms in vivo, we generated mice deficient for either STAT1α or STAT1ß. As expected, the functions of STAT1α and STAT1ß in IFN-α/ß- and IFN-λ-dependent antiviral activity are largely redundant. In contrast to the current dogma, however, we found that STAT1ß is transcriptionally active in response to IFN-γ. In the absence of STAT1α, STAT1ß shows more prolonged IFN-γ-induced phosphorylation and promoter binding. Both isoforms mediate protective, IFN-γ-dependent immunity against the bacterium Listeria monocytogenes, although with remarkably different efficiencies. Our data shed new light on the potential contributions of the individual STAT1 isoforms to STAT1-dependent immune responses. Knowledge of STAT1ß's function will help fine-tune diagnostic approaches and help design more specific strategies to interfere with STAT1 activity.


Asunto(s)
Genes Dominantes , Inmunidad Innata/efectos de los fármacos , Interferón gamma/farmacología , Factor de Transcripción STAT1/metabolismo , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Sustitución del Gen , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/patología , Interferón beta/farmacología , Listeria/efectos de los fármacos , Listeria/fisiología , Listeriosis/inmunología , Listeriosis/patología , Ratones , Muromegalovirus/efectos de los fármacos , Muromegalovirus/fisiología , Fosforilación/efectos de los fármacos , Fosfotirosina/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Factor de Transcripción STAT1/deficiencia , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA