Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Diabetes ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38603470

RESUMEN

Pluripotent stem cell-derived islets (SC-islets) now emerge as a new source for beta-cell replacement therapy. While the function of human islet transplants is hampered by excessive cell death post-transplantation, contributing factors include inflammatory reactions, insufficient revascularization and islet amyloid formation, there is a gap in knowledge on the engraftment process of the SC-islets. In this experimental study, we investigated the engraftment capability of SC-islets at three months post-transplantation, and observed that the cell apoptosis rates were lower, but the vascular density was similar in SC-islets to that of human islets. While the human islet transplant vascular structures were a mixture of remnant donor endothelium and ingrowing blood vessels, the SC-islets contained ingrowing blood vessels only. The oxygenation of the SC-islet grafts was twice as high as in the corresponding grafts of human islets, suggesting better vascular functionality. Similar to the blood vessel ingrowth, also the reinnervation of the SC-islets was four- to five-fold higher than the human islets. Both SC-islets and the human islets contained amyloid at one and three months post-transplantation. We conclude that the vascular and neural engraftment of SC-islets is superior to human islets, but that grafts of both origins develop amyloid with potential long-term consequences.

2.
EJNMMI Res ; 13(1): 107, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100042

RESUMEN

BACKGROUND: Beta-cell replacement methods such as transplantation of isolated donor islets have been proposed as a curative treatment of type 1 diabetes, but widespread application is challenging due to shortages of donor tissue and the need for continuous immunosuppressive treatments. Stem-cell-derived islets have been suggested as an alternative source of beta cells, but face transplantation protocols optimization difficulties, mainly due to a lack of available methods and markers to directly monitor grafts survival, as well as their localization and function. Molecular imaging techniques and particularly positron emission tomography has been suggested as a tool for monitoring the fate of islets after clinical transplantation. The integral membrane protein DGCR2 has been demonstrated to be a potential pancreatic islet biomarker, with specific expression on insulin-positive human embryonic stem-cell-derived pancreatic progenitor cells. The candidate Affibody molecule ZDGCR2:AM106 was radiolabeled with fluorine-18 using a novel click chemistry-based approach. The resulting positron emission tomography tracer [18F]ZDGCR2:AM106 was evaluated for binding to recombinant human DGCR2 and cryosections of stem-cell-derived islets, as well as in vivo using an immune-deficient mouse model transplanted with stem-cell-derived islets. Biodistribution of the [18F]ZDGCR2:AM106 was also assessed in healthy rats and pigs. RESULTS: [18F]ZDGCR2:AM106 was successfully synthesized with high radiochemical purity and yield via a pretargeting approach. [18F]ZDGCR2:AM106 retained binding to recombinant human DCGR2 as well as to cryosectioned stem-cell-derived islets, but in vivo binding to native pancreatic tissue in both rat and pig was low. However, in vivo uptake of [18F]ZDGCR2:AM106 in stem-cell-derived islets transplanted in the immunodeficient mice was observed, albeit only within the early imaging frames after injection of the radiotracer. CONCLUSION: Targeting of DGCR2 is a promising approach for in vivo detection of stem-cell-derived islets grafts by molecular imaging. The synthesis of [18F]ZDGCR2:AM106 was successfully performed via a pretargeting method to label a site-specific covalently bonded fluorine-18 to the Affibody molecule. However, the rapid washout of [18F]ZDGCR2:AM106 from the stem-cell-derived islets graft indicates that dissociation kinetics can be improved. Further studies using alternative binders of similar classes with improved binding potential are warranted.

3.
Free Radic Res ; 57(6-12): 460-469, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972305

RESUMEN

NADPH oxidase 4 (NOX4) inhibition has been reported to mitigate diabetes-induced beta-cell dysfunction and improve survival in vitro, as well as counteract high-fat diet-induced glucose intolerance in mice. We investigated the antidiabetic effects of the selective NOX4 inhibitor GLX7013159 in vivo in athymic diabetic mice transplanted with human islets over a period of 4 weeks. The GLX7013159-treated mice achieved lower blood glucose and water consumption throughout the treatment period. Furthermore, GLX7013159 treatment resulted in improved insulin and c-peptide levels, better insulin secretion capacity, as well as in greatly reduced apoptotic rates of the insulin-positive human cells, measured as colocalization of insulin and cleaved caspase-3. We conclude that the antidiabetic effects of NOX4 inhibition by GLX7013159 are observed also during a prolonged study period in vivo and are likely to be due to an improved survival and function of the human beta-cells.


Asunto(s)
Diabetes Mellitus Experimental , Insulinas , Humanos , Ratones , Animales , NADPH Oxidasa 4 , Glucemia , Hipoglucemiantes , Insulina , Glucosa/farmacología
4.
J Mol Endocrinol ; 71(1)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078556

RESUMEN

Beta-cell dysfunction is a hallmark of disease progression in patients with diabetes. Research has been focused on maintaining and restoring beta-cell function during diabetes development. The aims of this study were to explore the expression of C-type lectin domain containing 11A (CLEC11A), a secreted sulphated glycoprotein, in human islets and to evaluate the effects of CLEC11A on beta-cell function and proliferation in vitro. To test these hypotheses, human islets and human EndoC-ßH1 cell line were used in this study. We identified that CLEC11A was expressed in beta-cells and alpha-cells in human islets but not in EndoC-ßH1 cells, whereas the receptor of CLEC11A called integrin subunit alpha 11 was found in both human islets and EndoC-ßH1 cells. Long-term treatment with exogenous recombinant human CLEC11A (rhCLEC11A) accentuated glucose-stimulated insulin secretion, insulin content, and proliferation from human islets and EndoC-ßH1 cells, which was partially due to the accentuated expression levels of transcription factors MAFA and PDX1. However, the impaired beta-cell function and reduced mRNA expression of INS and MAFA in EndoC-ßH1 cells that were caused by chronic palmitate exposure could only be partially improved by the introduction of rhCLEC11A. Based on these results, we conclude that rhCLEC11A promotes insulin secretion, insulin content, and proliferation in human beta-cells, which are associated with the accentuated expression levels of transcription factors MAFA and PDX1. CLEC11A, therefore, may provide a novel therapeutic target for maintaining beta-cell function in patients with diabetes.


Asunto(s)
Células Secretoras de Insulina , Insulina , Humanos , Secreción de Insulina , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/metabolismo , Proliferación Celular
5.
Nat Biotechnol ; 40(7): 1042-1055, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35241836

RESUMEN

Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Células Madre Pluripotentes , Animales , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Ratones , Células Madre Pluripotentes/metabolismo
6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884797

RESUMEN

The anti-inflammatory role of regulatory B cells (Breg cells) has been associated with IL-35 based on studies of experimental autoimmune uveitis and encephalitis. The role of Breg cells and IL-35+ Breg cells for type 1 diabetes (T1D) remains to be investigated. We studied PBMCs from T1D subjects and healthy controls (HC) and found lowered proportions of Breg cells and IL-35+ Breg cells in T1D. To elucidate the role of Breg cells, the lymphoid organs of two mouse models of T1D were examined. Lower proportions of Breg cells and IL-35+ Breg cells were found in the animal models of T1D compared with control mice. In addition, the systemic administration of recombinant mouse IL-35 prevented hyperglycemia after multiple low dose streptozotocin (MLDSTZ) injections and increased the proportions of Breg cells and IL-35+ Breg cells. A higher proportion of IFN-γ+ cells among Breg cells were found in the PBMCs of the T1D subjects. In the MLDSTZ mice, IL-35 administration decreased the proportions of IFN-γ+ cells among the Breg cells. Our data illustrate that Breg cells may play an important role in the development of T1D and that IL-35 treatment prevents the development of hyperglycemia by maintaining the phenotype of the Breg cells under an experimental T1D condition.


Asunto(s)
Antiinflamatorios/farmacología , Linfocitos B Reguladores/inmunología , Diabetes Mellitus Tipo 1/prevención & control , Hiperglucemia/prevención & control , Interleucinas/farmacología , Adulto , Animales , Antiinflamatorios/sangre , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Hiperglucemia/inducido químicamente , Interferón gamma/sangre , Interleucinas/sangre , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos NOD , Estreptozocina/toxicidad
7.
Nat Commun ; 12(1): 4127, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226552

RESUMEN

Gliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue. In treatment-naïve glioma patients, the presence of TLS correlates with increased T cell infiltration. However, systemic delivery of αCD40 induces hypofunctional T cells and impairs the response to immune checkpoint inhibitors in pre-clinical glioma models. This is associated with a systemic induction of suppressive CD11b+ B cells post-αCD40 treatment, which accumulate in the tumor microenvironment. Our work unveils the pleiotropic effects of αCD40 therapy in glioma and reveals that immunotherapies can modulate TLS formation in the brain, opening up for future opportunities to regulate the immune response.


Asunto(s)
Antígenos CD40/inmunología , Glioma/tratamiento farmacológico , Estructuras Linfoides Terciarias/inmunología , Animales , Antineoplásicos/farmacología , Linfocitos B/inmunología , Neoplasias Encefálicas/tratamiento farmacológico , Antígeno CD11b , Línea Celular Tumoral , Citocinas , Femenino , Expresión Génica , Glioma/patología , Humanos , Inmunoglobulina G/genética , Inmunoterapia , Masculino , Ratones , Ratones Endogámicos C57BL , Células Mieloides , Fenotipo , Linfocitos T , Microambiente Tumoral/inmunología
8.
Stem Cell Res ; 50: 102114, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33340796

RESUMEN

Availability of numerous high-quality iPSC lines is needed to overcome donor-associated variability caused by genetic background effects. We generated two human iPSC lines from dermal fibroblasts of two healthy females using Sendai virus reprogramming. Quality assessment of the iPSC lines confirmed the expression of pluripotency markers, trilineage differentiation capacity and absence of exogenous expression of reprogramming factors. Both iPSC lines were genetically stable with a genotype that matched the fibroblast lines of donors. These iPSC lines add to available reference lines as a resource for disease modeling of polygenic and multifactorial diseases, for evaluation of differentiation protocols and toxicology screening.

9.
Ups J Med Sci ; 124(4): 228-237, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31623497

RESUMEN

Background: Murine boundary cap-derived neural crest stem cells (NCSCs) are capable of enhancing islet function by stimulating beta cell proliferation as well as increasing the neural and vascular density in the islets both in vitro and in vivo. This study aimed to isolate NCSC-like cells from human bone marrow.Methods: CD271 magnetic cell separation and culture techniques were used to purify a NCSC-enriched population of human bone marrow. Analyses of the CD271+ and CD271- fractions in terms of protein expression were performed, and the capacity of the CD271+ bone marrow cells to form 3-dimensional spheres when grown under non-adherent conditions was also investigated. Moreover, the NCSC characteristics of the CD271+ cells were evaluated by their ability to migrate toward human islets as well as human islet-like cell clusters (ICC) derived from pluripotent stem cells.Results: The CD271+ bone marrow population fulfilled the criterion of being multipotent stem cells, having the potential to differentiate into glial cells, neurons as well as myofibroblasts in vitro. They had the capacity to form 3-dimensional spheres as well as an ability to migrate toward human islets, further supporting their NCSC identity. Additionally, we demonstrated similar migration features toward stem cell-derived ICC.Conclusion: The results support the NCSC identity of the CD271-enriched human bone marrow population. It remains to investigate whether the human bone marrow-derived NCSCs have the ability to improve transplantation efficacy of not only human islets but stem cell-derived ICC as well.


Asunto(s)
Técnicas de Cultivo de Célula , Separación Celular/métodos , Islotes Pancreáticos/citología , Cresta Neural/citología , Células Madre Pluripotentes/citología , Adapaleno/metabolismo , Adulto , Anciano , Células de la Médula Ósea/citología , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Humanos , Trasplante de Islotes Pancreáticos , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Exp Cell Res ; 384(1): 111613, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31494095

RESUMEN

The lipotoxicity is considered as one of the risk for diabetes. Here we report C-type lectin domain family 11, member A (Clec11a) as a new regulator in islet playing a protective role in lipotoxicity induced dysfunction. Islet transcriptome sequencing was performed using the high-fat diet induced obesity (DIO) mice model. We found a significant decrease of Clec11a expression in islets of DIO mice compared to normal control mice, which was further confirmed by real-time PCR. Immunostaining demonstrated the localization of the Clec11a protein in mouse islets. Administration of recombinant human Clec11a (rClec11a) protein promoted the proliferation of islet cells and rescued the inhibition of fatty acid on cell proliferation, which involved the activation of Erk signaling pathway. We also found that the rClec11a altered the expression of genes involved in lipid metabolism.


Asunto(s)
Proliferación Celular/fisiología , Factores de Crecimiento de Célula Hematopoyética/metabolismo , Islotes Pancreáticos/metabolismo , Lectinas Tipo C/metabolismo , Metabolismo de los Lípidos/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Transducción de Señal/fisiología , Transcriptoma/fisiología
11.
J Endocr Soc ; 3(8): 1608-1616, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31404404

RESUMEN

Low-oxygenated and dormant islets with a capacity to become activated when needed may play a crucial role in the complex machinery behind glucose homeostasis. We hypothesized that low-oxygenated islets, when not functionally challenged, do not rapidly cycle between activation and inactivation but are a stable population that remain low-oxygenated. As this was confirmed, we aimed to characterize these islets with regard to cell composition, vascular density, and endocrine cell proliferation. The 2-nitroimidazole low-oxygenation marker pimonidazole was administered as a single or repeated dose to Wistar Furth rats. The stability of oxygen status of islets was evaluated by immunohistochemistry as the number of islets with incorporated pimonidazole adducts after one or repeated pimonidazole injections. Adjacent sections were evaluated for islet cell composition, vascular density, and endocrine cell proliferation. Single and repeated pimonidazole injections over an 8-hour period yielded accumulation of pimonidazole adducts in the same islets. An average of 30% of all islets was in all cases positively stained for pimonidazole adducts. These islets showed a similar endocrine cell composition as other islets but had lower vascular density and ß-cell proliferation. In conclusion, low-oxygenated islets were found to be a stable subpopulation of islets for at least 8 hours. Although they have previously been observed to be less functionally active, their islet cell composition was similar to that of other islets. Consistent with their lower oxygenation, they had fewer blood vessels than other islets. Notably, ß-cell regeneration preferentially occurred in better-oxygenated islets.

12.
Cell Transplant ; 28(11): 1455-1460, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31359771

RESUMEN

Beta cell replacement is an exciting field where new beta cell sources and alternative sites are widely explored. The liver has been the implantation site of choice in the clinic since the advent of islet transplantation. However, in most cases, repeated islet transplantation is needed to achieve normoglycemia in diabetic recipients. This study aimed to investigate whether there are differences in islet survival and engraftment between a first and a second transplantation, performed 1 week apart, to the liver. C57BL/6 mice were accordingly transplanted twice with an initial infusion of syngeneic islets expressing green fluorescent protein (GFP). The second islet transplant was performed 1 week later and consisted of islets isolated from non-GFP C57BL/6-mice. Animals were sacrificed either 1 day or 1 month after the second transplantation. A control group received a saline infusion instead of GFP-expressing islets, 1 week later obtained a standard non-GFP islet transplant, and was subsequently sacrificed 1 month later. Islet engraftment in the liver was assessed by immunohistochemistry and serum was analyzed for angiogenic factors induced by the first islet transplantation. Almost 70% of islets found in the liver following repeated islet transplantation originated from the second transplantation. The vascular density in the transplanted non-GFP-expressing islets did not differ depending on whether their transplantation was preceded by a primary islet transplantation or saline administration only nor did angiogenic factors in serum prior to the transplantation of non-GFP islets differ between animals that had received a previous islet transplantation or a saline infusion. We conclude that first islet transplantation creates, by unknown mechanisms, favorable conditions for the survival of a second transplant to the liver.


Asunto(s)
Supervivencia de Injerto , Trasplante de Islotes Pancreáticos/métodos , Animales , Células Cultivadas , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Trasplante Homólogo/métodos
13.
Horm Metab Res ; 50(8): 627-639, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30001566

RESUMEN

We assessed glucose uptake in different tissues in type 2 diabetes (T2D), prediabetes, and control subjects to elucidate its impact in the development of whole-body insulin resistance and T2D. Thirteen T2D, 12 prediabetes, and 10 control subjects, matched for age and BMI, underwent OGTT and abdominal subcutaneous adipose tissue (SAT) biopsies. Integrated whole-body 18F-FDG PET and MRI were performed during a hyperinsulinemic euglycemic clamp to asses glucose uptake rate (MRglu) in several tissues. MRglu in skeletal muscle, SAT, visceral adipose tissue (VAT), and liver was significantly reduced in T2D subjects and correlated positively with M-values (r=0.884, r=0.574, r=0.707 and r=0.403, respectively). Brain MRglu was significantly higher in T2D and prediabetes subjects and had a significant inverse correlation with M-values (r=-0.616). Myocardial MRglu did not differ between groups and did not correlate with the M-values. A multivariate model including skeletal muscle, brain and VAT MRglu best predicted the M-values (adjusted r2=0.85). In addition, SAT MRglu correlated with SAT glucose uptake ex vivo (r=0.491). In different stages of the development of T2D, glucose uptake during hyperinsulinemia is elevated in the brain in parallel with an impairment in peripheral organs. Impaired glucose uptake in skeletal muscle and VAT together with elevated glucose uptake in brain were independently associated with whole-body insulin resistance, and these tissue-specific alterations may contribute to T2D development.


Asunto(s)
Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Músculo Esquelético/metabolismo , Adulto , Anciano , Transporte Biológico , Encéfalo/diagnóstico por imagen , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Grasa Intraabdominal/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Tomografía de Emisión de Positrones , Imagen de Cuerpo Entero
14.
Diabetes Ther ; 9(4): 1511-1532, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29949016

RESUMEN

INTRODUCTION: The sodium-glucose cotransporter 2 inhibitor dapagliflozin and the glucagon-like peptide-1 (GLP-1) receptor agonist exenatide reduce bodyweight via differing and complementary mechanisms. This post hoc analysis investigated the metabolic effects and baseline associations with bodyweight loss on coadministration of dapagliflozin and exenatide once weekly (QW) among adults with obesity and without diabetes. METHODS: In the primary trial, adults with obesity and without diabetes [n = 50; 18-70 years; body mass index (BMI) 30-45 kg/m2] were randomized to double-blind oral dapagliflozin 10 mg (DAPA) once daily plus subcutaneous long-acting exenatide 2 mg QW (ExQW) or placebo over 24 weeks, followed by an open-label extension from 24-52 weeks during which all participants received active treatment. Primary results have been published previously. This analysis evaluated: (1) the effects of DAPA + ExQW on changes in substrates [free fatty acids (FFAs), glycerol, beta-OH-butyrate, and glucose], hormones (glucagon and insulin), and insulin secretion [insulinogenic index (IGI)] via an oral glucose tolerance test (OGTT) and (2) associations between bodyweight loss and baseline characteristics (e.g., BMI), single-nucleotide polymorphisms (SNPs) associated with the GLP-1 pathway, and markers of glucose regulation. RESULTS: Compared with placebo at 24 weeks, 2-h FFAs post-OGTT increased (mean difference, +20.4 µmol/l; P < 0.05), and fasting glucose, 2-h glucose post-OGTT, and glucose area under the concentration-time curve (AUC) decreased with DAPA + ExQW [mean differences, -0.68 mmol/l [P < 0.001], -2.20 mmol/l (P < 0.01), and -306 mmol/l min (P < 0.001), respectively]. Glucagon, glycerol, beta-OH-butyrate, and IGI did not differ by treatment group at 24 weeks. Over 52 weeks, DAPA + ExQW decreased fasting insulin, 2-h post-OGTT insulin, and insulin AUC. Among DAPA + ExQW-treated participants, for each copy of the SNP variant rs10010131 A allele (gene WFS1), bodyweight decreased by 2.4 kg (P < 0.05). Lower BMI and a lower IGI were also associated with greater bodyweight loss with DAPA + ExQW. CONCLUSIONS: Metabolic effects with DAPA + ExQW included less FFA suppression versus placebo during the OGTT, suggesting compensatory lipid mobilization for energy production when glucose availability was reduced because of glucosuria. The expected increase in glucagon with DAPA did not occur with DAPA + ExQW coadministration. Bodyweight loss with DAPA + ExQW was associated with the SNP variant rs10010131 A allele, lower baseline adiposity (BMI), and lower baseline insulin secretion (IGI). These findings require further validation. FUNDING: AstraZeneca.

15.
Sci Rep ; 8(1): 748, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335487

RESUMEN

Multiple endocrine neoplasia type 1 (MEN1) is an endocrine tumor syndrome caused by heterozygous mutations in the MEN1 tumor suppressor gene. The MEN1 pancreas of the adolescent gene carrier frequently contain diffusely spread pre-neoplasias and microadenomas, progressing to macroscopic and potentially malignant pancreatic neuroendocrine tumors (P-NET), which represents the major death cause in MEN1. The unveiling of the molecular mechanism of P-NET which is not currently understood fully to allow the optimization of diagnostics and treatment. Glucagon-like peptide 1 (GLP-1) pathway is essential in islet regeneration, i.e. inhibition of ß-cell apoptosis and enhancement of ß-cell proliferation, yet involvement of GLP-1 in MEN1 related P-NET has not yet been demonstrated. The objective of this work was to investigate if normal sized islets of Men1 heterozygous mice have increased Glucagon-like peptide-1 receptor (GLP-1R) expression compared to wild type islets, and if this increase is detectable in vivo with positron emission tomography (PET) using [68Ga]Ga-DO3A-VS-Cys40-Exendin-4 (68Ga-Exendin-4). 68Ga-Exendin-4 showed potential for early lesion detection in MEN1 pancreas due to increased GLP1R expression.


Asunto(s)
Carcinoma Neuroendocrino/diagnóstico por imagen , Receptor del Péptido 1 Similar al Glucagón/análisis , Heterocigoto , Neoplasias Pancreáticas/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Proteínas Proto-Oncogénicas/genética , Animales , Carcinoma Neuroendocrino/patología , Ratones , Neoplasias Pancreáticas/patología
17.
Eur J Endocrinol ; 177(4): R159-R168, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28487297

RESUMEN

Insulin-producing cells derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) have for long been a promising, but elusive treatment far from clinical translation into type 1 diabetes therapy. However, the field is now on the verge of moving such insulin-producing cells into clinical trials. Although stem cell therapies provide great opportunities, there are also potential risks such as teratoma formation associated with the treatment. Many considerations are needed on how to proceed with clinical translation, including whether to use hESCs or iPSCs, and whether encapsulation of tissue will be needed. This review aims to give an overview of the current knowledge of stem cell therapy outcomes in animal models of type 1 diabetes and a proposed road map towards the clinical setting with special focus on the potential risks and hurdles which needs to be considered. From a clinical point of view, transplantation of insulin-producing cells derived from stem cells must be performed without immune suppression in order to be an attractive treatment option. Although costly and highly labour intensive, patient-derived iPSCs would be the only solution, if not clinically successful encapsulation or tolerance induction protocols are introduced.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Células Madre Pluripotentes Inducidas/trasplante , Células Secretoras de Insulina/trasplante , Trasplante de Células Madre/métodos , Animales , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Secretoras de Insulina/metabolismo
18.
Pain ; 158(5): 945-961, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28157737

RESUMEN

Itch is a sensation that promotes the desire to scratch, which can be evoked by mechanical and chemical stimuli. In the spinal cord, neurons expressing the gastrin-releasing peptide receptor (GRPR) have been identified as specific mediators of itch. However, our understanding of the GRPR population in the spinal cord, and thus how these neurons exercise their functions, is limited. For this purpose, we constructed a Cre line designed to target the GRPR population of neurons (Grpr-Cre). Our analysis revealed that Grpr-Cre cells in the spinal cord are predominantly excitatory interneurons that are found in the dorsal lamina, especially in laminae II-IV. Application of the specific agonist gastrin-releasing peptide induced spike responses in 43.3% of the patched Grpr-Cre neurons, where the majority of the cells displayed a tonic firing property. Additionally, our analysis showed that the Grpr-Cre population expresses Vglut2 mRNA, and mice ablated of Vglut2 in Grpr-Cre cells (Vglut2-lox;Grpr-Cre mice) displayed less spontaneous itch and attenuated responses to both histaminergic and nonhistaminergic agents. We could also show that application of the itch-inducing peptide, natriuretic polypeptide B, induces calcium influx in a subpopulation of Grpr-Cre neurons. To summarize, our data indicate that the Grpr-Cre spinal cord neural population is composed of interneurons that use VGLUT2-mediated signaling for transmitting chemical and spontaneous itch stimuli to the next, currently unknown, neurons in the labeled line of itch.


Asunto(s)
Interneuronas/metabolismo , Prurito/patología , Receptores de Bombesina/metabolismo , Transducción de Señal/fisiología , Médula Espinal/citología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Dimensión del Dolor , Prurito/inducido químicamente , Prurito/diagnóstico por imagen , Prurito/genética , Índice de Severidad de la Enfermedad , Transducción de Señal/efectos de los fármacos , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
19.
J Diabetes Res ; 2016: 4930741, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27504459

RESUMEN

Small and big mouse islets were compared with special reference to their content of glucagon-producing α-cells and somatostatin-producing δ-cells. Areas stained for glucagon and somatostatin were measured in the largest cross section of small (diameter < 60 µm) and big (diameter > 100 µm) islets. Comparison of the areas indicated proportionally more δ- than α-cells in the small islets. After isolation with collagenase these islets were practically devoid of α-cells. We evaluated the functional importance of the islet size by measuring the Ca(2+) signal for insulin release. A majority of the small islets responded to the hyperpolarization action of somatostatin with periodic decrease of cytoplasmic Ca(2+) when glucose was elevated after tolbutamide blockade of the KATP channels.


Asunto(s)
Células Secretoras de Glucagón/citología , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/citología , Células Secretoras de Somatostatina/citología , Animales , Señalización del Calcio/efectos de los fármacos , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Hipoglucemiantes/farmacología , Inmunohistoquímica , Técnicas In Vitro , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones , Tamaño de los Órganos , Somatostatina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Tolbutamida/farmacología
20.
EMBO Mol Med ; 8(7): 729-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27226027

RESUMEN

ER stress results in activation of the unfolded protein response and has been implicated in the development of fibrotic diseases. In this study, we show that inhibition of the ER stress-induced IRE1α signaling pathway, using the inhibitor 4µ8C, blocks TGFß-induced activation of myofibroblasts in vitro, reduces liver and skin fibrosis in vivo, and reverts the fibrotic phenotype of activated myofibroblasts isolated from patients with systemic sclerosis. By using IRE1α(-/-) fibroblasts and expression of IRE1α-mutant proteins lacking endoribonuclease activity, we confirmed that IRE1α plays an important role during myofibroblast activation. IRE1α was shown to cleave miR-150 and thereby to release the suppressive effect that miR-150 exerted on αSMA expression through c-Myb. Inhibition of IRE1α was also demonstrated to block ER expansion through an XBP-1-dependent pathway. Taken together, our results suggest that ER stress could be an important and conserved mechanism in the pathogenesis of fibrosis and that components of the ER stress pathway may be therapeutically relevant for treating patients with fibrotic diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Fibrosis/patología , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Células Cultivadas , Humanos , Hígado/patología , Ratones , Piel/patología , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA