Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; : 114891, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047808

RESUMEN

N6-clyclohexyladenosine (CHA) is an adenosine A1 receptor agonist that inhibits thermogenesis. Cardiovascular side effects however, limit use of CHA as a therapeutic. We and others have shown that this can be reversed by administering 8-p-(sulfophenyl)theophylline (8-SPT), a nonspecific antagonist that does not cross the BBB. Other evidence shows that CNS actions of CHA may contribute to bradycardia through enhanced vagal tone and other mechanisms. Here we test the hypothesis that 8-SPT pretreatment alone is sufficient to prevent hypotension caused by CHA. To test this hypothesis, we pretreated rats with 8-SPT alone, and in combination with other antagonists to test the hypothesis that direct action of CHA on the heart is the primary mechanism by which CHA induces bradycardia and hypotension. Results show that pretreatment with 8-SPT alone is not sufficient to prevent CHA-induced hypotension. Pretreatment with 8-SPT or atropine alone did not prevent the fall in mean arterial pressure (MAP) and heart rate (HR), however, pretreatment with 8-SPT (25 mg/kg) and atropine (1 mg/kg) 15 min before CHA (1 mg/kg) preserves MAP and HR baseline values after CHA administration. We next asked if blood pressure was managed during the transition into a hypometabolic state, would prolong CHA-mediated inhibition of metabolism after cardiac arrest improve outcome better than anti-shivering medications meperidine and buspirone. We found that CHA-mediated hypotension can be mitigated by pretreatment with atropine and 8-SPT. This combination administered after cardiac arrest facilitated temperature management and metabolic suppression better than meperidine and buspirone, however, did not improve survival.

2.
Front Neurol ; 14: 1009718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36779060

RESUMEN

Targeted temperature management (TTM) is standard of care for neonatal hypoxic ischemic encephalopathy (HIE). Prevention of fever, not excluding cooling core body temperature to 33°C, is standard of care for brain injury post cardiac arrest. Although TTM is beneficial, HIE and cardiac arrest still carry significant risk of death and severe disability. Mammalian hibernation is a gold standard of neuroprotective metabolic suppression, that if better understood might make TTM more accessible, improve efficacy of TTM and identify adjunctive therapies to protect and regenerate neurons after hypoxic ischemia brain injury. Hibernating species tolerate cerebral ischemia/reperfusion better than humans and better than other models of cerebral ischemia tolerance. Such tolerance limits risk of transitions into and out of hibernation torpor and suggests that a barrier to translate hibernation torpor may be human vulnerability to these transitions. At the same time, understanding how hibernating mammals protect their brains is an opportunity to identify adjunctive therapies for TTM. Here we summarize what is known about the hemodynamics of hibernation and how the hibernating brain resists injury to identify opportunities to translate these mechanisms for neurocritical care.

3.
Ther Hypothermia Temp Manag ; 8(2): 108-116, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29480748

RESUMEN

Targeted temperature management is standard of care for cardiac arrest and is in clinical trials for stroke. N6-cyclohexyladenosine (CHA), an A1 adenosine receptor (A1AR) agonist, inhibits thermogenesis and induces onset of hibernation in hibernating species. Despite promising thermolytic efficacy of CHA, prior work has failed to achieve and maintain a prescribed target core body temperature (Tb) between 32°C and 34°C for 24 hours. We instrumented Sprague-Dawley rats (n = 19) with indwelling arterial and venous cannulae and a transmitter for monitoring Tb and ECG, then administered CHA via continuous IV infusion or intraperitoneal (IP) injection. In the first experiment (n = 11), we modulated ambient temperature and increased the dose of CHA in an attempt to manage Tb. In the second experiment (n = 8), we administered CHA (0.25 mg/[kg·h]) via continuous IV infusion and modulated cage surface temperature to control Tb. We rewarmed animals by increasing surface temperature at 1°C h-1 and discontinued CHA after Tb reached 36.5°C. Tb, brain temperature (Tbrain), heart rate, blood gas, and electrolytes were also monitored. Results show that titrating dose to adjust for individual variation in response to CHA led to tolerance and failed to manage a prescribed Tb. Starting with a dose (0.25 mg/[kg·h]) and modulating surface temperature to prevent overcooling proved to be an effective means to achieve and maintain Tb between 32°C and 34°C for 24 hours. Increasing surface temperature to 37°C during CHA administration brought Tb back to normothermic levels. All animals treated in this way rewarmed without incident. During the initiation of cooling, we observed bradycardia within 30 minutes of the start of IV infusion, transient hyperglycemia, and a mild hypercapnia; the latter normalized via metabolic compensation. In conclusion, we describe an intravenous delivery protocol for CHA at 0.25 mg/(kg·h) that, when coupled with conductive cooling, achieves and maintains a prescribed and consistent target Tb between 32°C and 34°C for 24 hours.


Asunto(s)
Adenosina/análogos & derivados , Hipotermia Inducida/métodos , Adenosina/administración & dosificación , Animales , Temperatura Corporal , Evaluación Preclínica de Medicamentos , Electrocardiografía , Femenino , Hiperglucemia/sangre , Hiperglucemia/etiología , Hipotermia Inducida/efectos adversos , Masculino , Ratas Sprague-Dawley , Telemetría
4.
J Pharmacol Exp Ther ; 362(3): 424-430, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28652388

RESUMEN

Cardiac arrest is a leading cause of death in the United States, and, currently, therapeutic hypothermia, now called targeted temperature management (TTM), is the only recent treatment modality proven to increase survival rates and reduce morbidity for this condition. Shivering and subsequent metabolic stress, however, limit application and benefit of TTM. Stimulating central nervous system A1 adenosine receptors (A1AR) inhibits shivering and nonshivering thermogenesis in rats and induces a hibernation-like response in hibernating species. In this study, we investigated the pharmacodynamics of two A1AR agonists in development as antishivering agents. To optimize body temperature (Tb) control, we evaluated the influence of every-other-day feeding, dose, drug, and ambient temperature (Ta) on the Tb-lowering effects of N6-cyclohexyladenosine (CHA) and the partial A1AR agonist capadenoson in rats. The highest dose of CHA (1.0 mg/kg, i.p.) caused all ad libitum-fed animals tested to reach our target Tb of 32°C, but responses varied and some rats overcooled to a Tb as low as 21°C at 17.0°C Ta Dietary restriction normalized the response to CHA. The partial agonist capadenoson (1.0 or 2.0 mg/kg, i.p.) produced a more consistent response, but the highest dose decreased Tb by only 1.6°C. To prevent overcooling after CHA, we studied continuous i.v. administration in combination with dynamic surface temperature control. Results show that after CHA administration control of surface temperature maintains desired target Tb better than dose or ambient temperature.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Adenosina/análogos & derivados , Aminopiridinas/farmacología , Hipotermia Inducida/efectos adversos , Tiritona/efectos de los fármacos , Termogénesis/efectos de los fármacos , Tiazoles/farmacología , Adenosina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Conducta Alimentaria/efectos de los fármacos , Hibernación , Masculino , Consumo de Oxígeno/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA