Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood Adv ; 8(7): 1747-1759, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38324726

RESUMEN

ABSTRACT: Therapeutic vaccination has long been a promising avenue for cancer immunotherapy but is often limited by tumor heterogeneity. The genetic and molecular diversity between patients often results in variation in the antigens present on cancer cell surfaces. As a result, recent research has focused on personalized cancer vaccines. Although promising, this strategy suffers from time-consuming production, high cost, inaccessibility, and targeting of a limited number of tumor antigens. Instead, we explore an antigen-agnostic polymeric in situ cancer vaccination platform for treating blood malignancies, in our model here with acute myeloid leukemia (AML). Rather than immunizing against specific antigens or targeting adjuvant to specific cell-surface markers, this platform leverages a characteristic metabolic and enzymatic dysregulation in cancer cells that produces an excess of free cysteine thiols on their surfaces. These thiols increase in abundance after treatment with cytotoxic agents such as cytarabine, the current standard of care in AML. The resulting free thiols can undergo efficient disulfide exchange with pyridyl disulfide (PDS) moieties on our construct and allow for in situ covalent attachment to cancer cell surfaces and debris. PDS-functionalized monomers are incorporated into a statistical copolymer with pendant mannose groups and TLR7 agonists to target covalently linked antigen and adjuvant to antigen-presenting cells in the liver and spleen after IV administration. There, the compound initiates an anticancer immune response, including T-cell activation and antibody generation, ultimately prolonging survival in cancer-bearing mice.


Asunto(s)
Cisteína , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Cisteína/uso terapéutico , Modelos Animales de Enfermedad , Leucemia Mieloide Aguda/tratamiento farmacológico , Adyuvantes Inmunológicos , Antígenos de Neoplasias , Activación de Linfocitos , Disulfuros/uso terapéutico
2.
Cell Rep Med ; 5(1): 101345, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38128533

RESUMEN

Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients that reduces efficacy and increases adverse reactions. Our laboratory has shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer, p(Man). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We find that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by T regulatory cells. We identify increased T cell receptor signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.


Asunto(s)
Formación de Anticuerpos , Productos Biológicos , Humanos , Antígenos , Anticuerpos , Linfocitos B , Productos Biológicos/farmacología
4.
NPJ Regen Med ; 8(1): 49, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696884

RESUMEN

Non-healing wounds have a negative impact on quality of life and account for many cases of amputation and even early death among patients. Diabetic patients are the predominate population affected by these non-healing wounds. Despite the significant clinical demand, treatment with biologics has not broadly impacted clinical care. Interleukin-4 (IL-4) is a potent modulator of the immune system, capable of skewing macrophages towards a pro-regeneration phenotype (M2) and promoting angiogenesis, but can be toxic after frequent administration and is limited by its short half-life and low bioavailability. Here, we demonstrate the design and characterization of an engineered recombinant interleukin-4 construct. We utilize this collagen-binding, serum albumin-fused IL-4 variant (CBD-SA-IL-4) delivered in a hyaluronic acid (HA)-based gel for localized application of IL-4 to dermal wounds in a type 2 diabetic mouse model known for poor healing as proof-of-concept for improved tissue repair. Our studies indicate that CBD-SA-IL-4 is retained within the wound and can modulate the wound microenvironment through induction of M2 macrophages and angiogenesis. CBD-SA-IL-4 treatment significantly accelerated wound healing compared to native IL-4 and HA vehicle treatment without inducing systemic side effects. This CBD-SA-IL-4 construct can address the underlying immune dysfunction present in the non-healing wound, leading to more effective tissue healing in the clinic.

5.
Adv Healthc Mater ; 12(26): e2300515, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37503634

RESUMEN

Butyrate is a key bacterial metabolite that plays an important and complex role in modulation of immunity and maintenance of epithelial barriers. Its translation to clinic is limited by poor bioavailability, pungent smell, and the need for high doses, and effective delivery strategies have yet to realize clinical potential. Here, a novel polymeric delivery platform for tunable and sustainable release of butyrate consisting of a methacrylamide backbone with butyryl ester or phenyl ester side chains as well as mannosyl side chains, which is also applicable to other therapeutically relevant metabolites is reported. This platform's utility in the treatment of non-healing diabetic wounds is explored. This butyrate-containing material modulated immune cell activation in vitro and induced striking changes in the milieu of soluble cytokine and chemokine signals present within the diabetic wound microenvironment in vivo. This novel therapy shows efficacy in the treatment of non-healing wounds through the modulation of the soluble signals present within the wound, and importantly accommodates the critical temporal regulation associated with the wound healing process. Currently, the few therapies to address non-healing wounds demonstrate limited efficacy. This novel platform is positioned to address this large unmet clinical need and improve the closure of otherwise non-healing wounds.


Asunto(s)
Diabetes Mellitus , Polímeros , Humanos , Polímeros/farmacología , Manosa , Preparaciones de Acción Retardada/farmacología , Butiratos/farmacología , Butiratos/uso terapéutico , Cicatrización de Heridas , Diabetes Mellitus/tratamiento farmacológico , Ésteres
6.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37066302

RESUMEN

Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients, which reduces efficacy and increases adverse reactions. Our laboratory has previously shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer (p(Man)). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We found that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by Tregs. We identify increased TCR signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.

7.
ACS Cent Sci ; 8(10): 1435-1446, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36313164

RESUMEN

Immune stimulating agents like Toll-like receptor 7 (TLR7) agonists induce potent antitumor immunity but are limited in their therapeutic window due to off-target immune activation. Here, we developed a polymeric delivery platform that binds excess unpaired cysteines on tumor cell surfaces and debris to adjuvant tumor neoantigens as an in situ vaccine. The metabolic and enzymatic dysregulation in the tumor microenvironment produces these exofacial free thiols, which can undergo efficient disulfide exchange with thiol-reactive pyridyl disulfide moieties upon intratumoral injection. These functional monomers are incorporated into a copolymer with pendant mannose groups and TLR7 agonists to target both antigen and adjuvant to antigen presenting cells. When tethered in the tumor, the polymeric glyco-adjuvant induces a robust antitumor response and prolongs survival of tumor-bearing mice, including in checkpoint-resistant B16F10 melanoma. The construct additionally reduces systemic toxicity associated with clinically relevant small molecule TLR7 agonists.

8.
Nat Biomed Eng ; 6(7): 819-829, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35534574

RESUMEN

Immune-checkpoint inhibitors have shown modest efficacy against immunologically 'cold' tumours. Interleukin-12 (IL-12)-a cytokine that promotes the recruitment of immune cells into tumours as well as immune cell activation, also in cold tumours-can cause severe immune-related adverse events in patients. Here, by exploiting the preferential overexpression of proteases in tumours, we show that fusing a domain of the IL-12 receptor to IL-12 via a linker cleavable by tumour-associated proteases largely restricts the pro-inflammatory effects of IL-12 to tumour sites. In mouse models of subcutaneous adenocarcinoma and orthotopic melanoma, masked IL-12 delivered intravenously did not cause systemic IL-12 signalling and eliminated systemic immune-related adverse events, led to potent therapeutic effects via the remodelling of the immune-suppressive microenvironment, and rendered cold tumours responsive to immune-checkpoint inhibition. We also show that masked IL-12 is activated in tumour lysates from patients. Protease-sensitive masking of potent yet toxic cytokines may facilitate their clinical translation.


Asunto(s)
Interleucina-12 , Melanoma , Animales , Citocinas , Inmunoterapia , Interleucina-12/farmacología , Ratones , Péptido Hidrolasas , Microambiente Tumoral
9.
Am J Physiol Cell Physiol ; 321(2): C369-C383, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232748

RESUMEN

Since the discovery of cytokines, much effort has been put forth to achieve therapeutic translation for treatment of various diseases, including cancer and autoimmune diseases. Despite these efforts, very few cytokines have cleared regulatory approval, and those that were approved are not commonly used due to their challenging toxicity profile and/or limited therapeutic efficacy. The main limitation in translation has been that wild-type cytokines have unfavorable pharmacokinetic and pharmacodynamic profiles, either eliciting unwanted systemic side effects or insufficient residence in secondary lymphoid organs. In this review, we address protein-engineering approaches that have been applied to both proinflammatory and anti-inflammatory cytokines to enhance their therapeutic indices, and we highlight diseases in which administration of engineered cytokines is especially relevant.


Asunto(s)
Citocinas/uso terapéutico , Inmunoterapia , Neoplasias/terapia , Ingeniería de Proteínas , Animales , Citocinas/genética , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inmunoterapia/métodos , Inflamación/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología
10.
Arthritis Rheumatol ; 73(5): 769-778, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33169522

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is a major autoimmune disease that causes synovitis and joint damage. Although clinical trials have been performed using interleukin-10 (IL-10), an antiinflammatory cytokine, as a potential treatment of RA, the therapeutic effects of IL-10 have been limited, potentially due to insufficient residence in lymphoid organs, where antigen recognition primarily occurs. This study was undertaken to engineer an IL-10-serum albumin (SA) fusion protein and evaluate its effects in 2 murine models of RA. METHODS: SA-fused IL-10 (SA-IL-10) was recombinantly expressed. Mice with collagen antibody-induced arthritis (n = 4-7 per group) or collagen-induced arthritis (n = 9-15 per group) were injected intravenously with wild-type IL-10 or SA-IL-10, and the retention of SA-IL-10 in the lymph nodes (LNs), immune cell composition in the paws, and therapeutic effect of SA-IL-10 on mice with arthritis were assessed. RESULTS: SA fusion to IL-10 led to enhanced accumulation in the mouse LNs compared with unmodified IL-10. Intravenous SA-IL-10 treatment restored immune cell composition in the paws to a normal status, elevated the frequency of suppressive alternatively activated macrophages, reduced IL-17A levels in the paw-draining LN, and protected joint morphology. Intravenous SA-IL-10 treatment showed similar efficacy as treatment with an anti-tumor necrosis factor antibody. SA-IL-10 was equally effective when administered intravenously, locally, or subcutaneously, which is a benefit for clinical translation of this molecule. CONCLUSION: SA fusion to IL-10 is a simple but effective engineering strategy for RA therapy and has potential for clinical translation.


Asunto(s)
Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , Articulaciones del Pie/efectos de los fármacos , Interleucina-10/farmacología , Ganglios Linfáticos/inmunología , Macrófagos/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Albúmina Sérica/farmacología , Animales , Células Presentadoras de Antígenos/metabolismo , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Modelos Animales de Enfermedad , Pie , Articulaciones del Pie/inmunología , Articulaciones del Pie/metabolismo , Articulaciones del Pie/patología , Miembro Posterior , Antígenos de Histocompatibilidad Clase I/metabolismo , Inyecciones Intravenosas , Interleucina-17/inmunología , Interleucina-17/metabolismo , Interleucina-6/inmunología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Ratones , Ingeniería de Proteínas , Transporte de Proteínas , Receptores Fc/metabolismo , Factor de Crecimiento Transformador beta/efectos de los fármacos , Factor de Crecimiento Transformador beta/inmunología , Inhibidores del Factor de Necrosis Tumoral/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA