Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38778796

RESUMEN

Organic mixed ionic-electronic conductors (OMIECs) are being explored in applications such as bioelectronics, biosensors, energy conversion and storage, and optoelectronics. OMIECs are largely composed of conjugated polymers that couple ionic and electronic transport in their structure as well as synthetic flexibility. Despite extensive research, previous studies have mainly focused on either enhancing ion conduction or enabling synthetic modification. This limited the number of OMIECs that excel in both domains. Here, a series of OMIECs based on functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) copolymers that combine efficient ion/electron transport with the versatility of post-functionalization were developed. EDOT monomers bearing sulfonic (EDOTS) and carboxylic acid (EDOTCOOH) groups were electrochemically copolymerized in different ratios on oxygen plasma-treated conductive substrates. The plasma treatment enabled the synthesis of copolymers containing high ratios of EDOTS (up to 68%), otherwise not possible with untreated substrates. This flexibility in synthesis resulted in the fabrication of copolymers with tunable properties in terms of conductivity (2-0.0019 S/cm) and ion/electron transport, for example, as revealed by their volumetric capacitances (122-11 F/cm3). The importance of the organic nature of the OMIECs that are amenable to synthetic modification was also demonstrated. EDOTCOOH was successfully post-functionalized without influencing the ionic and electronic transport of the copolymers. This opens a new way to tailor the properties of the OMIECs to specific applications, especially in the field of bioelectronics.

2.
Molecules ; 29(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276623

RESUMEN

Among breast cancer subtypes, triple-negative breast cancer stands out as the most aggressive, with patients facing a 40% mortality rate within the initial five years. The limited treatment options and unfavourable prognosis for triple-negative patients necessitate the development of novel therapeutic strategies. Photodynamic therapy (PDT) is an alternative treatment that can effectively target triple-negative neoplastic cells such as MDA-MB-231. In this in vitro study, we conducted a comparative analysis of the PDT killing rate of unbound Rose Bengal (RB) in solution versus RB-encapsulated chitosan nanoparticles to determine the most effective approach for inducing cytotoxicity at low laser powers (90 mW, 50 mW, 25 mW and 10 mW) and RB concentrations (50 µg/mL, 25 µg/mL, 10 µg/mL and 5 µg/mL). Intracellular singlet oxygen production and cell uptake were also determined for both treatment modalities. Dark toxicity was also assessed for normal breast cells. Despite the low laser power and concentration of nanoparticles (10 mW and 5 µg/mL), MDA-MB-231 cells experienced a substantial reduction in viability (8 ± 1%) compared to those treated with RB solution (38 ± 10%). RB nanoparticles demonstrated higher singlet oxygen production and greater uptake by cancer cells than RB solutions. Moreover, RB nanoparticles display strong cytocompatibility with normal breast cells (MCF-10A). The low activation threshold may be a crucial advantage for specifically targeting malignant cells in deep tissues.


Asunto(s)
Fotoquimioterapia , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Rosa Bengala/farmacología , Rosa Bengala/uso terapéutico , Oxígeno Singlete , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
3.
Photochem Photobiol ; 100(1): 115-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37477110

RESUMEN

Rose bengal (RB) solutions coupled with a green laser have proven to be efficient in clearing resilient nail infections caused by Trichophyton rubrum in a human pilot study and in extensive in vitro experiments. Nonetheless, the RB solution can become diluted or dispersed over the tissue and prevented from penetrating the nail plate to reach the subungual area where fungal infection proliferates. Nanoparticles carrying RB can mitigate the problem of dilution and are reported to effectively penetrate through the nail. For this reason, we have synthesized RB-encapsulated chitosan nanoparticles with a peak distribution size of ~200 nm and high reactive oxygen species (ROS) production. The RB-encapsulated chitosan nanoparticles aPDT were shown to kill more than 99% of T. rubrum, T. mentagrophytes, and T. interdigitale spores, which are the common clinically relevant pathogens in onychomycosis. These nanoparticles are not cytotoxic against human fibroblasts, which promotes their safe application in clinical translation.


Asunto(s)
Quitosano , Onicomicosis , Humanos , Trichophyton , Rosa Bengala/farmacología , Proyectos Piloto , Onicomicosis/tratamiento farmacológico
4.
Neural Regen Res ; 19(8): 1702-1706, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103235

RESUMEN

Nerve stimulation is a rapidly developing field, demonstrating positive outcomes across several conditions. Despite potential benefits, current nerve stimulation devices are large, complicated, and are powered via implanted pulse generators. These factors necessitate invasive surgical implantation and limit potential applications. Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications. However, device miniaturization presents a serious engineering challenge. This review presents significant advancements from several groups that have overcome this challenge and developed millimetric-sized nerve stimulation devices. These are based on antennas, mini-coils, magneto-electric and opto-electronic materials, or receive ultrasound power. We highlight key design elements, findings from pilot studies, and present several considerations for future applications of these devices.

5.
Microsyst Nanoeng ; 9: 145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025887

RESUMEN

Biomedical investigations in nanotherapeutics and nanomedicine have recently intensified in pursuit of new therapies with improved efficacy. Quantum dots (QDs) are promising nanomaterials that possess a wide array of advantageous properties, including electronic properties, optical properties, and engineered biocompatibility under physiological conditions. Due to these characteristics, QDs are mainly used for biomedical labeling and theranostic (therapeutic-diagnostic) agents. QDs can be functionalized with ligands to facilitate their interaction with the immune system, specific IgE, and effector cell receptors. However, undesirable side effects such as hypersensitivity and toxicity may occur, requiring further assessment. This review systematically summarizes the potential uses of QDs in the allergy field. An overview of the definition and development of QDs is provided, along with the applications of QDs in allergy studies, including the detection of allergen-specific IgE (sIgE), food allergens, and sIgE in cellular tests. The potential treatment of allergies with QDs is also described, highlighting the toxicity and biocompatibility of these nanodevices. Finally, we discuss the current findings on the immunotoxicity of QDs. Several favorable points regarding the use of QDs for allergy diagnosis and treatment are noted.

6.
Bioelectromagnetics ; 44(7-8): 181-191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908196

RESUMEN

Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna-a metal ring wrapped around the damaged nerve-powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.


Asunto(s)
Neuronas , Nervio Ciático , Ratas , Animales , Humanos , Electrodos , Nervio Ciático/fisiología , Estimulación Eléctrica , Imanes
7.
Adv Healthc Mater ; : e2302354, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37883783

RESUMEN

Conjugated polymers are enabling the development of flexible bioelectronics, largely driven by their organic nature which facilitates modification and tuning to suit a variety of applications. As organic semiconductors, conjugated polymers require a dopant to exhibit electrical conductivity, which in physiological conditions can result in dopant loss and thereby deterioration in electronic properties. To overcome this challenge, "self-doped" and self-acid-doped conjugated polymers having ionized pendant groups covalently bound to their backbone are being developed. The ionized group in a "self-doped" polymer behaves as the counterion that maintains electroneutrality, while an external dopant is required to induce charge transfer. The ionized group in a self-acid-doped polymer induces charge transfer and behaves as the counterion balancing the charges. Despite their doping processes being different, the two terms, self-doped and self-acid-doped, are often used interchangeably in the literature. Here, the differences are highlighted in the doping mechanisms of self-doped and self-acid-doped polymers, and it is proposed that the term "self-doped" should be replaced by "self-compensated," while reserving the term self-acid-doped for polymers that are intrinsically doped without the need of an external dopant. This is followed by a summary of examples of self-acid-doping in bioelectronics, highlighting their stability in the conductive state under physiological conditions.

8.
Molecules ; 28(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37836744

RESUMEN

Cancer, a prominent cause of death, presents treatment challenges, including high dosage requirements, drug resistance, poor tumour penetration and systemic toxicity in traditional chemotherapy. Photodynamic therapy, using photosensitizers like rose bengal (RB) with a green laser, shows promise against breast cancer cells in vitro. However, the hydrophilic RB struggles to efficiently penetrate the tumour site due to the unique clinical microenvironment, aggregating around rather than entering cancer cells. In this study, we have synthesized and characterized RB-encapsulated chitosan nanoparticles with a peak particle size of ~200 nm. These nanoparticles are readily internalized by cells and, in combination with a green laser (λ = 532 nm) killed 94-98% of cultured human breast cancer cells (MCF-7) and prostate cancer cells (PC3) at a low dosage (25 µg/mL RB-nanoparticles, fluence ~126 J/cm2, and irradiance ~0.21 W/cm2). Furthermore, these nanoparticles are not toxic to cultured human normal breast cells (MCF10A), which opens an avenue for translational applications.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Fotoquimioterapia , Neoplasias de la Próstata , Masculino , Humanos , Rosa Bengala/farmacología , Fármacos Fotosensibilizantes/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Microambiente Tumoral
9.
Front Cell Neurosci ; 17: 1095259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816852

RESUMEN

Spinal cord injury (SCI) is a devastating condition that causes severe loss of motor, sensory and autonomic functions. Additionally, many individuals experience chronic neuropathic pain that is often refractory to interventions. While treatment options to improve outcomes for individuals with SCI remain limited, significant research efforts in the field of electrical stimulation have made promising advancements. Epidural electrical stimulation, peripheral nerve stimulation, and functional electrical stimulation have shown promising improvements for individuals with SCI, ranging from complete weight-bearing locomotion to the recovery of sexual function. Despite this, there is a paucity of mechanistic understanding, limiting our ability to optimize stimulation devices and parameters, or utilize combinatorial treatments to maximize efficacy. This review provides a background into SCI pathophysiology and electrical stimulation methods, before exploring cellular and molecular mechanisms suggested in the literature. We highlight several key mechanisms that contribute to functional improvements from electrical stimulation, identify gaps in current knowledge and highlight potential research avenues for future studies.

10.
Lasers Surg Med ; 54(5): 758-766, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35195285

RESUMEN

BACKGROUND AND OBJECTIVES: Biocompatible nanoparticles have been increasingly used in a variety of medical applications, including photodynamic therapy. Although the impact of synthesis parameters and purification methods is reported in previous studies, it is still challenging to produce a reliable protocol for the fabrication, purification, and characterization of nanoparticles in the 200-300 nm range that are highly monodisperse for biomedical applications. STUDY DESIGN/MATERIALS AND METHODS: We investigated the synthesis of chitosan nanoparticles in the 200-300 nm range by evaluating the chitosan to sodium tripolyphosphate (TPP) mass ratio and acetic acid concentration of the chitosan solution. Chitosan nanoparticles were also crosslinked to rose bengal and incubated with human breast cancer cells (MCF-7) to test photodynamic activity using a green laser (λ = 532 nm, power = 90 mW). RESULTS: We established a simple protocol to fabricate and purify biocompatible nanoparticles with the most frequent size occurring between 200 and 300 nm. This was achieved using a chitosan to TPP mass ratio of 5:1 in 1% v/v acetic acid at a pH of 5.5. The protocol involved the formation of nanoparticle coffee rings that showed the particle shape to be spherical in the first approximation. Photodynamic treatment with rose bengal-nanoparticles killed ~98% of cancer cells. CONCLUSION: A simple protocol was established to prepare and purify spherical and biocompatible chitosan nanoparticles with a peak size of ~200 nm. These have remarkable antitumor activity when coupled with photodynamic treatment.


Asunto(s)
Quitosano , Nanopartículas , Fotoquimioterapia , Quitosano/química , Quitosano/uso terapéutico , Café , Humanos , Nanopartículas/química , Tamaño de la Partícula , Rosa Bengala/farmacología , Rosa Bengala/uso terapéutico
11.
DNA Cell Biol ; 41(2): 225-234, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34986032

RESUMEN

Hereditary sensory neuropathy type 1A (HSN1A) is an autosomal, dominantly inherited peripheral neuropathy caused by mutations in serine palmitoyl transferase long chain 1 (SPTLC1), involved in the de novo synthesis of sphingolipids. We have previously reported calcium imbalance, as well as mitochondrial and ER stress in both HSN1 patient lymphoblasts and a transiently transfected cell model. In this study, we investigated the role of the Ca2+-activated protease calpain in destabilizing the cell cytoskeleton, by examining calpain activity in SH-SY5Y cells overexpressing the V144D mutant and changes in microtubule-associated proteins (MAP). Intramitochondrial Ca2+ was found to be significantly depleted and cytoplasmic Ca2+ increased in the V144D mutant. Subsequently, calpain and proteasome activity were increased and calpain substrates, microtubule associated proteins MAP2, and tau were significantly reduced in the microtubule fraction of the mutant. Significant changes were also found in motor proteins dynein and KIF2A detected in the microtubule fraction of cells overexpressing the V144D mutation. There was also a reduction in anterograde and retrograde mitochondrial transport velocities in the V144D mutant. These findings strongly implicate cytoskeletal aberration caused by Ca2+ dysregulation and subsequent loss of microtubule transport functions as the cause of axonal dying back that is characteristic of HSN1.


Asunto(s)
Calcio
12.
J Biophotonics ; 14(1): e202000340, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058451

RESUMEN

Photodynamic therapy (PDT) with Rose Bengal has previously achieved eradication of Trichophyton rubrum infections causing toenail onychomycosis; however, its antifungal activity against other clinically relevant dermatophytes has yet to be studied. Here, we test the efficacy of PDT using Rose Bengal (140 µM) and 532 nm irradiation (101 J/cm2 ) against Trichophyton mentagrophytes and Trichophyton interdigitale spores, in comparison to T. rubrum. A significant reduction (>99%) of T. mentagrophytes and T. interdigitale was observed, while actual eradication of viable T. rubrum was achieved (99.99%). Laser irradiation alone inhibited growth of T. rubrum (55.2%) and T. mentagrophytes (45.2%) significantly more than T. interdigitale (25.5%) (P = .0086), which may indicate an increased presence of fungal pigments, xanthomegnin and melanin. The findings suggest that Rose Bengal-PDT can act against a broader spectrum of fungal pathogens, and with continued development may be employed in a wider range of clinical antifungal applications.


Asunto(s)
Rosa Bengala , Trichophyton , Arthrodermataceae , Rosa Bengala/farmacología
13.
Nanoscale ; 12(41): 21034-21059, 2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33078823

RESUMEN

Infections caused by drug-resistant pathogens are rapidly increasing in incidence and pose an urgent global health concern. New treatments are needed to address this critical situation while preventing further resistance acquired by the pathogens. One promising approach is antimicrobial photodynamic therapy (PDT), a technique that selectively damages pathogenic cells through reactive oxygen species (ROS) that have been deliberately produced by light-activated chemical reactions via a photosensitiser. There are currently some limitations to its wider deployment, including aggregation, hydrophobicity, and sub-optimal penetration capabilities of the photosensitiser, all of which decrease the production of ROS and lead to reduced therapeutic performance. In combination with nanoparticles, however, these challenges may be overcome. Their small size, functionalisable structure, and large contact surface allow a high degree of internalization by cellular membranes and tissue barriers. In this review, we first summarise the mechanism of PDT action and the interaction between nanoparticles and the cell membrane. We then introduce the categorisation of nanoparticles in PDT, acting as nanocarriers, photosensitising molecules, and transducers, in which we highlight their use against a range of bacterial and fungal pathogens. We also compare the antimicrobial efficiency of nanoparticles to unbound photosensitisers and examine the relevant safety considerations. Finally, we discuss the use of nanoparticulate drug delivery systems in clinical applications of antimicrobial PDT.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno
14.
Macromol Biosci ; 20(11): e2000103, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32537900

RESUMEN

Interaction of conjugated polymers with liposomes is an attractive approach that benefits from both systems' characteristics such as electroactivity and enhanced interaction with cells. Conjugated polymer-liposome complexes have been investigated for bioimaging, drug delivery, and photothermal therapy. Their fabrication has largely been achieved by multistep procedures that require first the synthesis and processing of the conjugated polymer. Here, a new one step fabrication approach is reported based on in situ polymerization of a conjugated monomer precursor around liposomes. Polyaniline (PANI) doped with phytic acid is synthesized via oxidative polymerization in the presence of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) vesicles to produce a conductive aqueous suspension of Liposome-PANI complexes. PANI interacts with liposomes without disrupting the bilayer as shown using differential scanning calorimetry and fluorescence quenching studies of the hydrophobic Nile red probe. The electronic conductivity of the Liposome-PANI complexes, which stems from the doped PANI accessible on the liposome surface, is confirmed using conductive atomic force microscopy and electrochemical impedance spectroscopy. Further, short-term in vitro cell studies show that the complexes colocalize with the cell membrane without reducing cell proliferation. This study presents a novel fabrication route to conductive suspensions of conjugated polymer-liposome complexes suitable for potential applications at the biointerface.


Asunto(s)
Compuestos de Anilina/química , Conductividad Eléctrica , Liposomas/química , Suspensiones/química , Animales , Línea Celular , Electrodos , Colorantes Fluorescentes/química , Ratones , Microscopía de Fuerza Atómica , Espectrofotometría Ultravioleta
15.
Acta Biomater ; 101: 314-326, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683016

RESUMEN

L-3,4-dihydroxyphenylalanine (L-DOPA) is a naturally occurring catechol that is known to increase the adhesive strength of various materials used for tissue repair. With the aim of fortifying a porous and erodible chitosan-based adhesive film, L-DOPA was incorporated in its fabrication for stronger photochemical tissue bonding (PTB), a repair technique that uses light and a photosensitiser to promote tissue adhesion. The results showed that L-DOPA did indeed increase the tissue bonding strength of the films when photoactivated by a green LED, with a maximum strength recorded of approximately 30 kPa, 1.4 times higher than in its absence. The addition of L-DOPA also did not appreciably change the swelling, mechanical and erodible properties of the film. This study showed that strong, porous and erodible adhesive films for PTB made from biocompatible materials can be obtained through a simple inclusion of a natural additive such as L-DOPA, which was simply mixed with chitosan without any chemical modifications. In vitro studies using human fibroblasts showed no negative effect on cell proliferation indicating that these films are biocompatible. The films are convenient for various surgical applications as they can provide strong tissue support and a microporous environment for cellular infusion without the use of sutures. STATEMENT OF SIGNIFICANCE: Tissue adhesives are not as strong as sutures on wounds under stress. Our group has previously demonstrated that strong sutureless tissue repair can be realised with chitosan-based adhesive films that photochemically bond to tissue when irradiated with green light. The advantage of this technique is that films are easier to handle than glues and sutures, and their crosslinking reactions can be controlled with light. However, these films are not optimal for high-tension tissue regenerative applications because of their non-porous structure, which cannot facilitate cell and nutrient exchange at the wound site. The present study resolves this issue, as we obtained a strong and porous photoactivated chitosan-based adhesive film, by simply using freeze drying and adding L-DOPA.


Asunto(s)
Quitosano/farmacología , Dihidroxifenilalanina/farmacología , Procesos Fotoquímicos , Adhesivos Tisulares/farmacología , Animales , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Módulo de Elasticidad , Fibroblastos/efectos de los fármacos , Humanos , Oxidación-Reducción , Porosidad , Ovinos , Resistencia a la Tracción
16.
Artículo en Inglés | MEDLINE | ID: mdl-31608275

RESUMEN

Organic semiconductors remain of major interest in the field of bioelectrochemistry for their versatility in chemical and electrochemical behavior. These materials have been tailored using organic synthesis for use in cell stimulation, sustainable energy production, and in biosensors. Recent progress in the field of fully organic semiconductor biosensors is outlined in this review, with a particular emphasis on the synthetic tailoring of these semiconductors for their intended application. Biosensors ultimately function on the basis of a physical, optical or electrochemical change which occurs in the active material when it encounters the target analyte. Electrochemical biosensors are becoming increasingly popular among organic semiconductor biosensors, owing to their good detection performances, and simple operation. The analyte either interacts directly with the semiconductor material in a redox process or undergoes a redox process with a moiety such as an enzyme attached to the semiconductor material. The electrochemical signal is then transduced through the semiconductor material. The most recent examples of organic semiconductor biosensors are discussed here with reference to the material design of polymers with semiconducting backbones, specifically conjugated polymers, and polymer semiconducting dyes. We conclude that direct interaction between the analyte and the semiconducting material is generally more sensitive and cost effective, despite being currently limited by the need to identify, and synthesize selective sensing functionalities. It is also worth noting the potential roles of highly-sensitive, organic transistor devices and small molecule semiconductors, such as the photochromic and redox active molecule spiropyran, as polymer pendant groups in future biosensor designs.

17.
ACS Appl Mater Interfaces ; 11(36): 32613-32622, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31418544

RESUMEN

Photochemical tissue bonding with chitosan-based adhesive films is an experimental surgical technique that avoids the risk of thermal tissue injuries and the use of sutures to maintain strong tissue connection. This technique is advantageous over other tissue repair methods as it is minimally invasive and does not require mixing of multiple components before or during application. To expand the capability of the film to beyond just a tissue bonding device and promote tissue regeneration, in this study, we designed bioadhesive films that could also support stem cells. The films were modified with oligomeric chitosan to tune their erodibility and made porous through freeze-drying for better tissue integration. Of note, porous adhesive films (pore diameter ∼110 µm), with 10% of the chitosan being oligomeric, could retain similar tissue bonding strengths (13-15 kPa) to that of the nonporous chitosan-based adhesives used in previous studies when photoactivated. When tested in vitro, these films exhibited a mass loss of ∼20% after 7 days, swelling ratios of ∼270-300%, a percentage elongation of ∼90%, and both a tensile strength and Young's modulus of ∼1 MPa. The physical properties of the films were suitable for maintaining the viability and multipotency of bone-marrow-derived human mesenchymal stem cells over the duration of culture. Thus, these biocompatible, photoactivated porous, and erodible adhesive films show promise for applications in controlled cell delivery and regenerative medicine.


Asunto(s)
Quitosano/farmacología , Células Madre Mesenquimatosas/citología , Cicatrización de Heridas/efectos de los fármacos , Animales , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Módulo de Elasticidad , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Nanoporos/ultraestructura , Porosidad , Ovinos , Suturas , Resistencia a la Tracción , Adhesivos Tisulares/farmacología
18.
Adv Sci (Weinh) ; 6(11): 1801212, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31179205

RESUMEN

An original wireless stimulator for peripheral nerves based on a metal loop (diameter ≈1 mm) that is powered by a transcranial magnetic stimulator (TMS) and does not require circuitry components is reported. The loop can be integrated in a chitosan scaffold that functions as a graft when applied onto transected nerves (graft-antenna). The graft-antenna is bonded to rat sciatic nerves by a laser without sutures; it does not migrate after implantation and is able to trigger steady compound muscle action potentials for 12 weeks (CMAP ≈1.3 mV). Eight weeks postoperatively, axon regeneration is facilitated in transected nerves that are repaired with the graft-antenna and stimulated by the TMS for 1 h per week. The graft-antenna is an innovative and minimally-invasive device that functions concurrently as a wireless stimulator and adhesive scaffold for nerve repair.

19.
Biomater Sci ; 6(3): 493-500, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29363686

RESUMEN

Bioelectronic materials based on conjugated polymers are being developed in the hope to interface with electroresponsive tissues. We have recently demonstrated that a polyaniline chitosan patch can efficiently electro-couple with cardiac tissue modulating its electrophysiology. As a promising bioelectronic material that can be tailored to different types of devices, we investigate here the impact of varying the synthesis conditions and time of the in situ polymerization of aniline (An) on the sheet resistance of the bioelectronic patch. The sheet resistance increases significantly for samples that have either the lowest molar ratio of oxidant to monomer or the highest molar ratio of dopant to monomer, while the polymerization time does not have a significant effect on the electrical properties. Conductive atomic force microscopy reveals that the patch with the lowest sheet resistance has a connected network of the conductive phase. In contrast, patches with higher sheet resistances exhibit conductive areas of lower current signals or isolated conductive islands of high current signals. Having identified the formulation that results in patches with optimal electrical properties, we used it to fabricate patches that were implanted in rats for two weeks. It is shown that the patch retains an electroactive nature, and only mild inflammation is observed with fibrous tissue encapsulating the patch.


Asunto(s)
Implantes Absorbibles/efectos adversos , Compuestos de Anilina/química , Materiales Biocompatibles/química , Electricidad , Animales , Materiales Biocompatibles/efectos adversos , Materiales Biocompatibles/síntesis química , Quitosano/química , Femenino , Ácido Fítico/química , Polimerizacion , Ratas , Ratas Long-Evans
20.
Biomed Eng Online ; 17(1): 7, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29357892

RESUMEN

BACKGROUND: Extracellular matrices (ECMs) are often used in reconstructive surgery to enhance tissue regeneration and remodeling. Sutures and staples are currently used to fix ECMs to tissue although they can be invasive devices. Other sutureless and less invasive techniques, such as photochemical tissue bonding, cannot be coupled to ECMs because of their intrinsic opacity to light. RESULTS: We succeeded in fabricating a biocompatible and adhesive device that is based on ovine forestomach matrix (OFM) and a chitosan adhesive. The natural opacity of the OFM has been overcome by adding the adhesive into the matrix that allows for the light to effectively penetrate through it. The OFM-chitosan device is semitransparent (attenuation length ~ 106 µm) and can be photoactivated by green light to bond to tissue. This device does not require sutures or staples and guarantees a bonding strength of ~ 23 kPa. CONCLUSIONS: A new semitransparent and biocompatible bandage has been successfully fabricated and characterized for sutureless tissue bonding.


Asunto(s)
Vendajes , Quitosano/química , Matriz Extracelular/química , Fenómenos Ópticos , Procesos Fotoquímicos , Adhesividad , Animales , Femenino , Rayos Láser , Ensayo de Materiales , Fenómenos Mecánicos , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA