Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Cell Rep ; 42(11): 113411, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37952155

RESUMEN

Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3aP900L/+ mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. P900L mutants exhibit core growth and behavioral phenotypes shared across models but show subtle epigenomic changes, while R878H mutants display extensive disruptions. We identify mutation-specific dysregulated genes that may contribute to variable disease severity. Shared transcriptomic disruption identified across mutations overlaps dysregulation observed in other developmental disorder models and likely drives common phenotypes. Together, our findings define central drivers of DNMT3A disorders and illustrate how variable epigenomic disruption contributes to phenotypic heterogeneity in neurodevelopmental disease.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética , Epigenómica , Mutación/genética
2.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909558

RESUMEN

Phenotypic heterogeneity is a common feature of monogenic neurodevelopmental disorders that can arise from differential severity of missense variants underlying disease, but how distinct alleles impact molecular mechanisms to drive variable disease presentation is not well understood. Here, we investigate missense mutations in the DNA methyltransferase DNMT3A associated with variable overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity in neurodevelopmental disease. We generate a DNMT3A P900L/+ mouse model mimicking a disease mutation with mild-to-moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. We show that the P900L mutation leads to disease-relevant overgrowth, obesity, and social deficits shared across DNMT3A disorder models, while the R878H mutation causes more extensive epigenomic disruption leading to differential dysregulation of enhancers elements. We identify distinct gene sets disrupted in each mutant which may contribute to mild or severe disease, and detect shared transcriptomic disruption that likely drives common phenotypes across affected individuals. Finally, we demonstrate that core gene dysregulation detected in DNMT3A mutant mice overlaps effects in other developmental disorder models, highlighting the importance of DNMT3A-deposited methylation in neurodevelopment. Together, these findings define central drivers of DNMT3A disorders and illustrate how variable disruption of transcriptional mechanisms can drive the spectrum of phenotypes in neurodevelopmental disease.

3.
PLoS One ; 14(2): e0205476, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30785886

RESUMEN

The taxonomic identification of mammalian fauna within fossil assemblages is a well-established component of paleoenvironmental reconstructions. However, many fragmentary specimens recovered from fossil sites are often disregarded as they can be difficult to identify with the precision required for taxonomic methods. For this reason, the large numbers of isolated rodent incisors that are often recovered from hominin fossil bearing sites are generally regarded as offering little interpretive value. Ecomorphological analysis, often referred to as a "taxon-free" method, can potentially circumvent this problem by focusing on the adaptive, rather than the taxonomic significance of rodent incisor morphology. Here, we determine if the morphology of the upper incisors of modern southern African rodents reflects dietary behavior using discriminant function analysis. Our model suggests that a strong ecomorphological signal exists in our modern sample and we apply these results to two samples of isolated incisors from the hominin fossil bearing sites, Sterkfontein and Swartkrans.


Asunto(s)
Fósiles/anatomía & histología , Incisivo/anatomía & histología , Roedores/anatomía & histología , África Austral , Animales , Evolución Biológica , Dieta , Ambiente , Conducta Alimentaria , Femenino , Hominidae , Masculino , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA