Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Food Energy Secur ; 10(3): e286, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34594547

RESUMEN

Wild rice species are a source of genetic material for improving cultivated rice (Oryza sativa) and a means to understand its evolutionary history. Renewed interest in non-steady-state photosynthesis in crops has taken place due its potential in improving sustainable productivity. Variation was characterized for photosynthetic induction and relaxation at two leaf canopy levels in three rice species. The wild rice accessions had 16%-40% higher rates of leaf CO2 uptake (A) during photosynthetic induction relative to the O. sativa accession. However, O. sativa had an overall higher photosynthetic capacity when compared to accessions of its wild progenitors. Additionally, O. sativa had a faster stomatal closing response, resulting in higher intrinsic water-use efficiency during high-to-low light transitions. Leaf position in the canopy had a significant effect on non-steady-state photosynthesis, but not steady-state photosynthesis. The results show potential to utilize wild material to refine plant models and improve non-steady-state photosynthesis in cultivated rice for increased productivity.

2.
ScientificWorldJournal ; 2012: 287907, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23319883

RESUMEN

One of the technology options that can help farmers cope with water scarcity at the field level is alternate wetting and drying (AWD). Limited information is available on the varietal responses to nitrogen, AWD, and their interactions. Field experiments were conducted at the International Rice Research Institute (IRRI) farm in 2009 dry season (DS), 2009 wet season (WS), and 2010 DS to determine genotypic responses and water use efficiency of rice under two N rates and two water management treatments. Grain yield was not significantly different between AWD and continuous flooding (CF) across the three seasons. Interactive effects among variety, water management, and N rate were not significant. The high yield was attributed to the significantly higher grain weight, which in turn was due to slower grain filling and high leaf N at the later stage of grain filling of CF. AWD treatments accelerated the grain filling rate, shortened grain filling period, and enhanced whole plant senescence. Under normal dry-season conditions, such as 2010 DS, AWD reduced water input by 24.5% than CF; however, it decreased grain yield by 6.9% due to accelerated leaf senescence. The study indicates that proper water management greatly contributes to grain yield in the late stage of grain filling, and it is critical for safe AWD technology.


Asunto(s)
Oryza/metabolismo , Agua/metabolismo , Cruzamiento , Genotipo , Nitrógeno/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Temperatura
3.
Proc Natl Acad Sci U S A ; 101(27): 9971-5, 2004 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-15226500

RESUMEN

The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35 degrees C and 1.13 degrees C, respectively, for the period 1979-2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1 degrees C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Biomasa , Clima , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA