RESUMEN
(1) Background: Doxorubicin (DOX) is extensively used for cancer treatments; however, its clinical application is limited because of its cardiotoxic adverse effects. A combination of DOX and agents with cardioprotective properties is an effective strategy to ameliorate DOX-related cardiotoxicity. Polyphenolic compounds are ideal for the investigation of novel cardioprotective agents. Chlorogenic acid (CGA), an essential dietary polyphenol found in plants, has been previously reported to exert antioxidant, cardioprotective, and antiapoptotic properties. The current research evaluated CGA's in vivo cardioprotective properties in DOX-induced cardiotoxicity and the probable mechanisms underlying this protection. (2) Methods: CGA's cardioprotective properties were investigated in rats that were treated with CGA (100 mg/kg, p.o.) for fourteen days. The experimental model of cardiotoxicity was induced with a single intraperitoneal (15 mg/kg i.p.) injection of DOX on the 10th day. (3) Results: Treatment with CGA significantly improved the DOX-caused altered cardiac damage markers (LDH, CK-MB, and cTn-T), and a marked improvement in cardiac histopathological features accompanied this. DOX downregulated the expression of Nrf2/HO-1 signaling pathways, and the CGA reversed this effect. Consistently, caspase-3, an apoptotic-related marker, and dityrosine expression were suppressed, while Nrf2 and HO-1 expressions were elevated in the cardiac tissues of DOX-treated rats after treatment with the CGA. Furthermore, the recovery was confirmed by the downregulation of 8-OHdG and dityrosine (DT) expressions in immunohistochemical findings. (4) Conclusions: CGA demonstrated a considerable cardioprotective effect against DOX-induced cardiotoxicity. One of the possible mechanisms for these protective properties was the upregulation of the Nrf2/HO-1-dependent pathway and the downregulation of DT, which may ameliorate oxidative stress and cardiomyocyte apoptosis. These findings suggest that CGA may be cardioprotective, particularly in patients receiving DOX-based chemotherapy.
RESUMEN
AIMS: Post-operative atrial fibrillation is defined as an episode of atrial fibrillation that occurs 1-5 days after a surgical procedure in patients without a previous history of atrial fibrillation. Multiple factors such as demographics, cardiac surgical, endogenous, or mental health may relate to post-operative atrial fibrillation.The aim of this study was to identify multivariable high-risk factors for post-operative atrial fibrillation and to propose a risk-assessment tool. METHODS AND RESULTS: A cross-sectional observational study was conducted in a University Hospital of Greece. Predictor variables examined demographic and clinical variables, anxiety, depression, health-related quality of life, frailty, perioperative mortality (European System for Cardiac Operative Risk Evaluation II), and 10-year survival/mortality risk (Charlson Comorbidity Index score). The outcome variable was post-operative atrial fibrillation. Multivariable analysis was assessed to identify predictors of post-operative atrial fibrillation.Ninety-one patients were included in our sample. Post-operative atrial fibrillation was diagnosed in 44 (48.4%). Factors associated with post-operative atrial fibrillation are the following: age group of 66-75 years [OR 5.78, 95% confidence interval (CI) 1.37-24.34], Charlson Comorbidity Index score (OR 1.42, 95% CI 1.07-1.89), and hours of mechanical ventilation (OR 1.03, 95% CI 1.00-1.06). The Charlson Comorbidity Index score was identified as an independent predictor of post-operative atrial fibrillation (exp: 1.412, 95% CI: 1.017-1.961). CONCLUSION: Patients with post-operative atrial fibrillation had a higher Charlson Comorbidity Index score. The Charlson Comorbidity Index was identified as an independent clinical predictor of post-operative atrial fibrillation. The risk-assessment tool proposed includes age, Charlson Comorbidity Index score, and hours of mechanical ventilation. Future studies are needed to establish such an assessment.
Asunto(s)
Fibrilación Atrial , Humanos , Anciano , Fibrilación Atrial/etiología , Calidad de Vida , Estudios Transversales , Factores de Riesgo , Medición de RiesgoRESUMEN
(1) Background: Various epidemiological studies suggest that oxidative stress and disrupted neuronal function are mechanistically linked to neurodegenerative diseases (NDs), including Parkinson's disease (PD) and Alzheimer's disease (AD). DNA damage, oxidative stress, lipid peroxidation, and eventually, cell death such as NDs can be induced by nitrosamine-related compounds, leading to neurodegeneration. A limited number of studies have reported that exposure to diethylnitrosamine (DEN), which is commonly found in processed/preserved foods, causes biochemical abnormalities in the brain. Artichoke leaves have been used in traditional medicine as a beneficial source of bioactive components such as hydroxycinnamic acids, cynarine, chlorogenic acid, and flavonoids (luteolin and apigenin). The aim of this study is to investigate the favorable effects of exogenous artichoke (Cynara scolymus) methanolic leaf extract supplementation in ameliorating DEN-induced deleterious effects in BALB/c mouse brains. (2) Methods: This study was designed to evaluate DEN (toxicity induction by 100 mg/kg) and artichoke (protective effects of 0.8 and 1.6 g/kg treatment) for 14 days. All groups underwent a locomotor activity test to evaluate motor activity. In brain tissue, oxidative stress indicators (TAC, TOS, and MDA), Klotho and PPARγ levels, and apoptotic markers (Bax, Bcl-2, and caspase-3) were measured. Brain slices were also examined histopathologically. (3) Results: Artichoke effectively ameliorated DEN-induced toxicity with increasing artichoke dose. Impaired motor function and elevated oxidative stress markers (decreasing MDA and TOS levels and increasing TAC level) induced by DEN intoxication were markedly restored by high-dose artichoke treatment. Artichoke significantly improved the levels of Klotho and PPARγ, which are neuroprotective factors, in mouse brain tissue exposed to DEN. In addition, caspase-3 and Bax levels were reduced, whereas the Bcl-2 level was elevated with artichoke treatment. Furthermore, recovery was confirmed by histopathological analysis. (4) Conclusions: Artichoke exerted neuroprotective effects against DEN-induced brain toxicity by mitigating oxidant parameters and exerting antioxidant and antiapoptotic effects. Further research is needed to fully identify the favorable impact of artichoke supplementation on all aspects of DEN brain intoxication.
RESUMEN
BACKGROUND: In the setting of ST-segment elevation myocardial infarction (STEMI), the faster and stronger antiplatelet action of ticagrelor compared to clopidogrel, as well as its pleiotropic effects, could result in a greater degree of cardioprotection and final infarct size (FIS) limitation. The aim of our study was to comparatively evaluate the effect of ticagrelor and clopidogrel on myocardial salvage index (MSI) in STEMI patients undergoing thrombolysis. METHODS: Forty-two STEMI patients treated with thrombolysis were randomized to receive clopidogrel (n = 21) or ticagrelor (n = 21), along with aspirin. Myocardial area at risk (AAR) was calculated according to the BARI and the APPROACH jeopardy scores. FIS was quantified by cardiac magnetic resonance imaging (CMR) performed 5-6 months post-randomization. MSI was calculated as (AAR-FIS)/AAR × 100%. Primary endpoint of our study was MSI. Secondary endpoints were FIS and CMR-derived left ventricular ejection fraction (LVEF) at 5 -6 months post-randomization. RESULTS: By using the BARI score for AAR calculation, mean MSI was 52.25 ± 30.5 for the clopidogrel group and 54.29 ± 31.08 for the ticagrelor group (p = 0.83), while mean MSI using the APPROACH score was calculated at 51.94 ± 30 and 53.09 ± 32.39 (p = 0.9), respectively. Median CMR-derived FIS-as a percentage of LV-was 10.7% ± 8.25 in the clopidogrel group and 12.09% ± 8.72 in the ticagrelor group (p = 0.6). Mean LVEF at 5-6 months post-randomization did not differ significantly between randomization groups. CONCLUSIONS: Our results suggest that the administration of ticagrelor in STEMI patients undergoing thrombolysis offer a similar degree of myocardial salvage, compared to clopidogrel.
Asunto(s)
Infarto del Miocardio , Infarto del Miocardio con Elevación del ST , Clopidogrel/efectos adversos , Humanos , Infarto del Miocardio/terapia , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/tratamiento farmacológico , Volumen Sistólico , Terapia Trombolítica/efectos adversos , Ticagrelor/efectos adversos , Función Ventricular IzquierdaRESUMEN
The potential renoprotective effects of vardenafil (VAR) have been evaluated in a very limited number of studies using acute kidney injury animal models other than contrast-induced nephropathy (CIN) with promising results, while avanafil (AVA) has not been evaluated in this respect before. The purpose of this study was to evaluate for the first time the potential renoprotective effect of VAR and AVA in a rat model of CIN. Twenty-five male Wistar rats were equally assigned into five groups: control, CIN, CIN+N-acetyl cysteine (NAC) (100 mg/kg/day) as a positive control, CIN+VAR (10 mg/kg/day) and CIN+AVA (50 mg/kg/day). CIN was induced by dehydration, inhibition of prostaglandin and nitric oxide synthesis as well as exposure to the contrast medium (CM). Serum Cr (sCr) levels were measured at 24 and 48 h after CIN induction. At 48 h of CM exposure, animals were sacrificed. Matrix metalloproteinase (MMP) 2 (MMP-2) and MMP-9, kidney injury molecule 1 (KIM-1) and cystatin-C (Cys-C) were measured on renal tissue. Histopathological findings were evaluated on kidney tissue. All treatment groups had close to normal kidney appearance. sCr levels subsided in all treatment groups compared to CIN group at 48 h following CIN induction. A significant decline in the levels of MMP-2, MMP-9, KIM-1 and Cys-C compared to CIN group was observed. These results provide emerging evidence that VAR and AVA may have the potential to prevent CIN.
RESUMEN
Cancer growth in host tissues features glutamine (gln) depletion over time, decreasing epithelial cells' optimal functioning. In addition, radiotherapy (RT) and/or chemotherapy (CT) cause damage to normal tissues, probably enhanced by this depletion. The present study prospectively examined the effect of gln supplementation on 72 patients with thoracic and upper aerodigestive malignancies (T&UAM) treated with sequential or concurrent RT-CT or RT alone. All patients received prophylactic gln powder 15 g bid for the full duration of treatment. The severity of acute radiation toxicities was graded according to the RT Oncology Group/European Organization for Research and Treatment of Cancer criteria. Primary endpoints were the incidence of grade >2 toxicities, weight loss and requirement for analgesics, and the secondary endpoint was the association of the length of irradiated esophagus from treatment planning with the use of opioids. The incidence of adverse effects was as follows: Grade >2 stomatitis, 25.0%; esophagitis, 60.5%; dysphagia, 54.2%; pain, 25.4%; mycosis, 40.8%. Stomatitis grade >2 was more frequent in patients with head and neck tumors (P<0.001) and in those with prior surgery (P<0.001). Esophagitis (P=0.020) and dysphagia (P=0.008) grade >2 were more frequent in patients with concurrent RT-CT. Regarding analgesics, 9.9% of patients received no pain treatment, 56.3% received simple analgesic therapy and 33.8% opioids. Patients on opioid therapy had a greater mean length of irradiated esophagus (P=0.024) or length >12 cm (P=0.018). In 54.2% of patients, weight loss was observed, particularly with concurrent RT-CT (P=0.007). Thus, the use of oral gln may have an important role in reducing acute radiation toxicities and weight loss, and in lowering the requirement for analgesics in patients with T&UAM. Further randomized trials are required to identify the appropriate gln dose, duration of treatment and precise radiation dosimetric parameters in this group of patients. The present clinical trial was retrospectively registered in the ClinicalTrials.gov Protocol Registration and Results System (registration no. NCT05054517/22-09-2021).
RESUMEN
Soon after the beginning of the severe acute respiratory syndrome coronavirus 2 (SARSCoV2) pandemic in December, 2019, numerous research teams, assisted by vast capital investments, achieved vaccine development in a fraction of time. However, almost 8 months following the initiation of the European vaccination programme, the need for prospective monitoring of the vaccineinduced immune response, its determinants and related sideeffects remains a priority. The present study aimed to quantify the immune response following full vaccination with the BNT162b2 coronavirus disease 2019 (COVID19) mRNA vaccine by measuring the levels of immunoglobulin G (IgG) titers in healthcare professionals. Moreover, common sideeffects and factors associated with IgG titers were identified. For this purpose, blood samples from 517 individuals were obtained and analysed. Blood sampling was performed at a mean period of 69.0±23.5 days following the second dose of the vaccine. SARSCoV2 IgG titers had an overall mean value of 4.23±2.76. Females had higher titers than males (4.44±2.70 and 3.89 ±2.84, respectively; P=0.007), while nonsmokers had higher titers than smokers (4.48±2.79 and 3.80±2.64, respectively; P=0.003). An older age was also associated with lower antibody titers (P<0.001). Moreover, the six most prevalent adverse effects were pain at the injection site (72.1%), generalized fatigue (40.5%), malaise (36.3%), myalgia (31,0%), headache (25.8%) and dizziness/weakness (21.6%). The present study demonstrated that the immune response after receiving the BNT162b2 COVID19 mRNA vaccine is dependent on various modifiable and nonmodifiable factors. Overall, the findings of the present study highlight two key aspects of the vaccination programs: First, the need for prospective immunosurveillance studies in order to estimate the duration of immunity, and second, the need to identify those individuals who are at a greater risk of developing low IgG titers in order to evaluate the need for a third dose of the vaccine.