Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Signal ; 38: 159-170, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28711717

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important lipid regulator of membrane signaling and remodeling processes. Accumulating evidence indicates a link between PIP2 metabolism and Toll-like receptor (TLR) signaling, a key transducer of immune responses such as inflammation, phagocytosis, and autophagy. Microglia are immune effector cells that serve as macrophages in the brain. Here, we examined the potential role of phosphatidylinositol 4-phosphate 5-kinase α (PIP5Kα), a PIP2-producing enzyme, in TLR2 signaling in microglial cells. Treatment of BV2 microglial cells with lipoteichoic acid (LTA), a TLR2 agonist, increased PIP5Kα expression in BV2 and primary microglial cells, but not in primary cultures from TLR2-deficient mice. PIP5Kα knockdown of BV2 cells with shRNA significantly suppressed LTA-induced activation of TLR2 downstream signaling, including the production of proinflammatory cytokines and phosphorylation of NF-κB, JNK, and p38 MAP kinase. Such suppression was reversed by complementation of PIP5Kα. PIP5Kα knockdown lowered PIP2 levels and impaired LTA-induced plasma membrane targeting of TIRAP, a PIP2-dependent adaptor required for TLR2 activation. Besides, PIP5Kα knockdown inhibited phagocytic uptake of E. coli particles and autophagy-related vesicle formation triggered by LTA. Taken together, these results support that PIP5Kα can positively mediate TLR2-associated immune responses through PIP2 production in microglial cells.


Asunto(s)
Inmunidad/efectos de los fármacos , Microglía/enzimología , Microglía/inmunología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptor Toll-Like 2/metabolismo , Actinas/metabolismo , Animales , Autofagia/efectos de los fármacos , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Fagocitosis/efectos de los fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Polimerizacion/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ácidos Teicoicos , Regulación hacia Arriba/efectos de los fármacos
2.
PLoS One ; 11(9): e0163394, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27684549

RESUMEN

The hexameric ATPase p97 has been implicated in diverse cellular processes through interactions with many different adaptor proteins at its N-terminal domain. Among these, the Ufd1-Npl4 heterodimer is a major adaptor, and the p97-Ufd1-Npl4 complex plays an essential role in endoplasmic reticulum-associated degradation (ERAD), acting as a segregase that translocates the ubiquitinated client protein from the ER membrane into the cytosol for proteasomal degradation. We determined the crystal structure of the complex of the N-terminal domain of p97 and the SHP box of Ufd1 at a resolution of 1.55 Å. The 11-residue-long SHP box of Ufd1 binds at the far-most side of the Nc lobe of the p97 N domain primarily through hydrophobic interactions, such that F225, F228, N233 and L235 of the SHP box contact hydrophobic residues on the surface of the p97 Nc lobe. Mutating these key interface residues abolished the interactions in two different binding experiments, isothermal titration calorimetry and co-immunoprecipitation. Furthermore, cycloheximide chase assays showed that these same mutations caused accumulation of tyrosinase-C89R, a well-known ERAD substrate, thus implying decreased rate of protein degradation due to their defects in ERAD function. Together, these results provide structural and biochemical insights into the interaction between p97 N domain and Ufd1 SHP box.

3.
Biochim Biophys Acta ; 1853(10 Pt A): 2432-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26149501

RESUMEN

The type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family members and their lipid product, phosphatidylinositol 4,5-bisphosphate (PIP2) are important regulators of actin cytoskeleton. PIP5Kγ 90kDa (PIP5Kγ90), an isoform of PIP5K, localizes to focal adhesions (FAs) and is activated via its interaction with the cytoskeletal protein, talin. Currently, regulatory signaling pathways of talin-PIP5Kγ90 interaction related to FA dynamics and cell motility are not well understood. Considering the presence of Akt consensus motifs in PIP5Kγ90, we examined a potential link of Akt activation to talin-PIP5Kγ90 interaction. We found that Akt phosphorylated PIP5Kγ90 specifically at serine 555 (S555) in vitro and in epidermal growth factor (EGF)-treated cells phosphoinositide 3-kinase-dependently. EGF treatment suppressed talin-PIP5Kγ90 interaction and PIP2 levels. Similarly, a phosphomimetic mutant (S555D), but not non-phosphorylatable mutant (S555A), of PIP5Kγ90 had reduced talin binding affinity, lowered PIP2 levels, and was dislocated from FAs. The S555D mutant also caused decreases in actin stress fibers and vinculin-positive FAs. Moreover, assembly and disassembly of FAs were enhanced by S555D expression and EGF-induced cell migration was relatively low in S555A-expressing cells compared to wild-type-expressing cells. PIP5Kγ87, a PIP5Kγ splice variant lacking the talin binding motif, was phosphorylated by Akt, which, however, hardly affected PIP2 levels. Taken together, our results suggested that Akt-mediated PIP5Kγ90 S555 phosphorylation is a novel regulatory point for talin binding to control PIP2 level at the FAs, thereby modulating FA dynamics and cell motility.


Asunto(s)
Empalme Alternativo/fisiología , Movimiento Celular/fisiología , Adhesiones Focales/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Talina/metabolismo , Sustitución de Aminoácidos , Adhesiones Focales/genética , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación Missense , Fosforilación/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Proto-Oncogénicas c-akt/genética , Talina/genética
4.
BMB Rep ; 47(7): 361-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24856829

RESUMEN

Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking.


Asunto(s)
Fosfatidilinositoles/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolipasas/metabolismo , Receptores de Interleucina-1/metabolismo
5.
J Biol Chem ; 288(8): 5645-59, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23297396

RESUMEN

Phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), generated by PI 4-phosphate 5-kinase (PIP5K), regulates many critical cellular events. PIP(2) is also known to mediate plasma membrane localization of the Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), required for the MyD88-dependent Toll-like receptor (TLR) 4 signaling pathway. Microglia are the primary immune competent cells in brain tissue, and TLR4 is important for microglial activation. However, a functional role for PIP5K and PIP(2) in TLR4-dependent microglial activation remains unclear. Here, we knocked down PIP5Kα, a PIP5K isoform, in a BV2 microglial cell line using stable expression of lentiviral shRNA constructs or siRNA transfection. PIP5Kα knockdown significantly suppressed induction of inflammatory mediators, including IL-6, IL-1ß, and nitric oxide, by lipopolysaccharide. PIP5Kα knockdown also attenuated signaling events downstream of TLR4 activation, including p38 MAPK and JNK phosphorylation, NF-κB p65 nuclear translocation, and IκB-α degradation. Complementation of the PIP5Kα knockdown cells with wild type but not kinase-dead PIP5Kα effectively restored the LPS-mediated inflammatory response. We found that PIP5Kα and TIRAP colocalized at the cell surface and interacted with each other, whereas kinase-dead PIP5Kα rendered TIRAP soluble. Furthermore, in LPS-stimulated control cells, plasma membrane PIP(2) increased and subsequently declined, and TIRAP underwent bi-directional translocation between the membrane and cytosol, which temporally correlated with the changes in PIP(2). In contrast, PIP5Kα knockdown that reduced PIP(2) levels disrupted TIRAP membrane targeting by LPS. Together, our results suggest that PIP5Kα promotes TLR4-associated microglial inflammation by mediating PIP(2)-dependent recruitment of TIRAP to the plasma membrane.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Receptor Toll-Like 4/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Ensayo de Inmunoadsorción Enzimática/métodos , Células HEK293 , Células HeLa , Humanos , Inflamación , Interleucina-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Microglía/metabolismo , Óxido Nítrico/química , Receptores de Interleucina-1/metabolismo , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA