Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111592, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396115

RESUMEN

Accidental spills are pervasive pollution in aquatic ecosystems. Resorting to chemical dispersant is one of the most implemented strategies in response to oil spills, but it results in an increase in the bio-availability of oil compounds known to disturb fish neurosensory capacities and hence fish habitat use. While it has become well established that acute oil exposure can cause a range of physiological defects, sub-lethal consequences on animal behaviour have only received recent attention. Here we investigated the effect of an exposure to a 62 h- dispersant treated oil on the exploration tendency (exploratory activity, and avoidance of unfamiliar open areas) of juvenile European sea bass. Three different concentrations of chemically dispersed oil were tested, low and medium conditions bracketing the range of likely situations that fish encounter following an oil spill, the high dose representing a more severe condition. Fish recovery capacities were also evaluated during 2 weeks post-exposure. Our results suggest a dose-response relationship; the low dose (0.048 ± 0.007 g L-1 of total petroleum hydrocarbons ([TPH])) had no effect on sea bass behavioural response to a novel environment while medium (0.243 ± 0.012 g L-1 [TPH]) and high (0.902 ± 0.031 g L-1 [TPH]) doses altered fish exploratory activity and their typical avoidance of unfamiliar open areas. Our experiment also suggest signs of recovery capacities in the first 10 days following oil exposure even if fish might need more time to fully recover from observed alterations. We discuss the possibility that observed alterations may result from a neurosensory or physiological known defects of oil exposure, causing anaesthetic-like sedative behaviours. Altogether, this study shows that juvenile sea bass exposed to oil spill exhibit transient behavioural impairments that may have major population-level consequences given the high mortality experienced by juveniles.


Asunto(s)
Lubina/fisiología , Contaminación por Petróleo , Contaminantes Químicos del Agua/toxicidad , Animales , Ecosistema , Conducta Exploratoria , Hidrocarburos , Petróleo , Contaminantes Químicos del Agua/análisis
2.
J Comp Physiol B ; 190(2): 161-167, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31915911

RESUMEN

The decrease in ocean pH that results from the increased concentration of dissolved carbon dioxide (CO2) is likely to influence many physiological functions in organisms. It has been shown in different fish species that ocean acidification (OA) mainly affects sensory systems, including olfaction. Impairment of olfactory function may be due to a dysfunction of the GABAergic system and to an alteration of neuronal plasticity in the whole brain and particularly in olfactory bulbs. Recent studies revealed that OA-driven effects on sensory systems are partly mediated by the regulation of the expression of genes involved in neurotransmission and neuronal development. However, these studies were performed in fish exposed to acidified waters for short periods, of only a few days. In the present paper, we investigated whether such effects could be observed in adult (4-years old) European sea bass (Dicentrarchus labrax) exposed to two hypercapnic and acidified conditions (PCO2 ≈ 980 µatm; pH total = 7.7 and PCO2 ≈ 1520 µatm; pH total = 7.5) from the larval stage. In a first approach, we analyzed by qPCR the expression of five genes involved in neurogenesis (DCX) or expressed in GABAergic (Gabra3), glutamatergic (Gria1) or dopaminergic (TH and DDC) neurons in the olfactory bulbs. The tested experimental conditions did not change the expression of any of the five genes. This result would indicate that a potential disruption of the olfactory function of sea bass exposed for a long term to near-future OA, either occurs at a level other than the transcriptional one or involves other actors of the sensory function.


Asunto(s)
Dióxido de Carbono/farmacología , Proteínas de Peces/genética , Bulbo Olfatorio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Lubina , Proteínas de Peces/metabolismo , Homeostasis , Concentración de Iones de Hidrógeno , Neurogénesis/genética , Océanos y Mares , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiología , Agua de Mar , Transmisión Sináptica/genética
3.
PLoS One ; 14(9): e0221283, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31490944

RESUMEN

Ocean acidification and ocean warming (OAW) are simultaneously occurring and could pose ecological challenges to marine life, particularly early life stages of fish that, although they are internal calcifiers, may have poorly developed acid-base regulation. This study assessed the effect of projected OAW on key fitness traits (growth, development and swimming ability) in European sea bass (Dicentrarchus labrax) larvae and juveniles. Starting at 2 days post-hatch (dph), larvae were exposed to one of three levels of PCO2 (650, 1150, 1700 µatm; pH 8.0, 7.8, 7.6) at either a cold (15°C) or warm (20°C) temperature. Growth rate, development stage and critical swimming speed (Ucrit) were repeatedly measured as sea bass grew from 0.6 to ~10.0 (cold) or ~14.0 (warm) cm body length. Exposure to different levels of PCO2 had no significant effect on growth, development or Ucrit of larvae and juveniles. At the warmer temperature, larvae displayed faster growth and deeper bodies. Notochord flexion occurred at 0.8 and 1.2 cm and metamorphosis was completed at an age of ~45 and ~60 days post-hatch for sea bass in the warm and cold treatments, respectively. Swimming performance increased rapidly with larval development but better swimmers were observed in the cold treatment, reflecting a potential trade-off between fast grow and swimming ability. A comparison of the results of this and other studies on marine fish indicates that the effects of OAW on the growth, development and swimming ability of early life stages are species-specific and that generalizing the impacts of climate-driven warming or ocean acidification is not warranted.


Asunto(s)
Lubina/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Agua de Mar/química , Natación , Temperatura , Animales , Lubina/fisiología , Concentración de Iones de Hidrógeno , Larva/fisiología
4.
J Exp Biol ; 222(Pt 3)2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30606796

RESUMEN

Periods of food deprivation of several months are common events for fishes and in such conditions, fitness will be determined by their capacity to maximize food encounters while minimizing predation risk. In this context, the propensity to take risks and the willingness to associate with conspecifics are particularly important as they contribute to alleviating the trade-off between predation avoidance and foraging efficiency. This study examined to what extent food deprivation modulates fish risk-taking and social behaviours, as well as the relationship between them. To address these issues, juvenile European sea bass were either fed daily with a maintenance ration or food deprived for a period of 3 weeks. Risk taking and sociability were assessed through measurements of fish willingness to explore a novel environment, and to interact with a novel object or a conspecific. Multivariate analysis allowed the identification of three behaviours: risk taking, exploratory activity and solitariness. Food-deprived fish interacted less with conspecifics than control fish; however, no difference in terms of risk taking and exploratory patterns was observed. Finally, the relationship between risk taking and solitariness was influenced by feeding status. When food-deprived, fish with a higher propensity to take risk displayed increased solitariness, while when fed normally, they interacted more with conspecifics.


Asunto(s)
Lubina/fisiología , Privación de Alimentos , Conducta Social , Animales
5.
Environ Toxicol Chem ; 38(1): 210-221, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30206986

RESUMEN

The ecological and economic importance of fish act as a brake on the development of chemical dispersants as operational instruments following oil spills. Although a valuable and consistent body of knowledge exists, its use in spill response is limited. The objective of the present study was to increase current knowledge base to facilitate the translation of published data into information of operational value. Thus we investigated the dose-response relationship between dispersant-treated oil exposure and ecologically relevant consequences by combining laboratory and field experiments. Effects were examined over almost a year using juveniles of the slowly growing, commercially important European sea bass (Dicentrarchus labrax). A reliable interpretation of biomarker responses requires a complete knowledge of the factors likely to affect them. Interpopulational variability is of particular importance in environmental impact assessment because biomarker responses from a population collected in an impacted area are classically compared with those collected in a clean site. Our study revealed no effect of the exposure to dispersant-treated oil on fish hypoxia tolerance and temperature susceptibility at 1 and 11 mo post exposure. Similarly, no effect of the exposure was observed on the ability of the fish to cope with environmental contingencies in the field, regardless of the dose tested. Thus we feel confident to suggest that a 48-h exposure to chemically treated oil does not affect the ability of sea bass to cope with mild environmental contingencies. Finally, investigation of interpopulation variability revealed large differences in both hypoxia tolerance and temperature susceptibility among the 2 populations tested, suggesting that this variability may blur the interpretation of population comparisons as classically practiced in impact assessment. Environ Toxicol Chem 2019;38:210-221. © 2018 SETAC.


Asunto(s)
Adaptación Fisiológica , Lubina/fisiología , Biomarcadores/análisis , Fenómenos Ecológicos y Ambientales , Exposición a Riesgos Ambientales/análisis , Hipoxia/patología , Contaminación por Petróleo , Temperatura , Animales , Lubina/crecimiento & desarrollo , Estimación de Kaplan-Meier , Petróleo , Hidrocarburos Policíclicos Aromáticos/análisis , Salinidad , Factores de Tiempo , Agua , Contaminantes Químicos del Agua/toxicidad
6.
Environ Pollut ; 236: 462-476, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29414371

RESUMEN

Impacted marine environments lead to metal accumulation in edible marine fish, ultimately impairing human health. Nevertheless, metal accumulation is highly variable among marine fish species. In addition to ecological features, differences in bioaccumulation can be attributed to species-related physiological processes, which were investigated in two marine fish present in the Canary Current Large Marine Ecosystem (CCLME), where natural and anthropogenic metal exposure occurs. The European sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis were exposed for two months to two environmentally realistic dietary cadmium (Cd) doses before a depuration period. Organotropism (i.e., Cd repartition between organs) was studied in two storage compartments (the liver and muscle) and in an excretion vector (bile). To better understand the importance of physiological factors, the significance of hepatic metallothionein (MT) concentrations in accumulation and elimination kinetics in the two species was explored. Accumulation was faster in the sea bass muscle and liver, as inferred by earlier Cd increase and a higher accumulation rate. The elimination efficiency was also higher in the sea bass liver compared to sole, as highlighted by greater biliary excretion. In the liver, no induction of MT synthesis was attributed to metal exposure, challenging the relevance of using MT concentration as a biomarker of metal contamination. However, the basal MT pools were always greater in the liver of sea bass than in sole. This species-specific characteristic might have enhanced Cd biliary elimination and relocation to other organs such as muscle through the formation of more Cd/MT complexes. Thus, MT basal concentrations seem to play a key role in the variability observed in terms of metal concentrations in marine fish species.


Asunto(s)
Lubina/metabolismo , Peces Planos/metabolismo , Metalotioneína/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Cadmio , Cinética , Hígado/metabolismo , Metales , Músculos/metabolismo
7.
Mar Environ Res ; 129: 258-267, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28647285

RESUMEN

A two months common garden experiment was carried out to explore the potential differences of energy metabolism in northern core (France, 50°N and 47°N) vs southern peripheral (Portugal, 41°N) populations of European flounder Platichthys flesus, submitted to cold condition (CC: water temperature = 10 °C) and to warm and hypoxic condition (WHC: water temperature = 22 °C, and moderate hypoxia with O2 saturation = 40% during the last 6 days). Convergent growth rates (in length) were observed in the different populations and conditions, when the southern peripheral population of Portugal did not grow under cold conditions. A general reduction in liver lipid storage was observed in all populations subjected to WHC when compared to CC, whereas muscle lipid storage was unaffected. The thermal and hypoxia treatment induced changes in muscle phospholipids (PL) ratios: phosphatidylserine/PL, phosphatidylinositol/PL, between northern and southern populations. Fish from northern estuaries displayed marked anaerobiosis in WHC (increased liver LDH activity) vs marked aerobiosis under CC (higher muscle CS and CCO activities). Contrariwise, fish from the southern estuary displayed equilibrium between anaerobiosis and aerobiosis activities in WHC. Flounders from the southern population exhibited generally lower G6PDH activity (proxy for anabolism and for defense against oxidative damage), tissue-specific anaerobiosis response (muscle LDH activity) and lower CS and CCO muscle activities (aerobiosis markers) when compared to northern populations. Globally, these inter-population differences in bioenergetics suggest that southern peripheral vs northern core populations have developed differential capacity to cope with interacting stressors and that much of this variation is more likely due to local adaptation.


Asunto(s)
Metabolismo Energético/fisiología , Monitoreo del Ambiente , Lenguado/fisiología , Agua de Mar/química , Temperatura , Animales , Estuarios , Francia , Portugal , Estrés Fisiológico
8.
J Exp Biol ; 220(Pt 10): 1846-1851, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28302867

RESUMEN

Ocean warming, eutrophication and the consequent decrease in oxygen lead to smaller average fish size. Although such responses are well known in an evolutionary context, involving multiple generations, this appears to be incompatible with current rapid environmental change. Instead, phenotypic plasticity could provide a means for marine fish to cope with rapid environmental changes. However, little is known about the mechanisms underlying plastic responses to environmental conditions that favour small phenotypes. Our aim was to investigate how and why European sea bass that had experienced a short episode of moderate hypoxia during their larval stage subsequently exhibited a growth depression at the juvenile stage compared with the control group. We examined whether energy was used to cover higher costs for maintenance, digestion or activity metabolisms, as a result of differing metabolic rate. The lower growth was not a consequence of lower food intake. We measured several respirometry parameters and we only found a higher specific dynamic action (SDA) duration and lower SDA amplitude in a fish phenotype with lower growth; this phenotype was also associated with a lower protein digestive capacity in the intestine. Our results contribute to the understanding of the observed decrease in growth in response to climate change. They demonstrate that the reduced growth of juvenile fishes as a consequence of an early life hypoxia event was not due to a change of fish aerobic scope but to a specific change in the efficiency of protein digestive functions. The question remains of whether this effect is epigenetic and could be reversible in the offspring.


Asunto(s)
Lubina/crecimiento & desarrollo , Hipoxia/metabolismo , Proteolisis , Animales , Metabolismo Basal , Lubina/metabolismo , Lubina/fisiología , Tamaño Corporal/fisiología , Cambio Climático , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/fisiología , Fenotipo
9.
Sci Total Environ ; 586: 890-899, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28215807

RESUMEN

In the context of global change, ectotherms are increasingly impacted by abiotic perturbations. Along the distribution area of a species, the populations at low latitudes are particularly exposed to temperature increase and hypoxic events. In this study, we have compared the proteomic responses in the liver of European flounder populations, by using 2-D electrophoresis. One southern peripheral population from Portugal vs two northern core populations from France, were reared in a common garden experiment. Most of the proteomic differences were observed between the two experimental conditions, a cold vs a warm and hypoxic conditions. Consistent differentiations between populations were observed in accumulation of proteins involved in the bioenergetics- and methionine-metabolisms, fatty acids transport, and amino-acid catabolism. The specific regulation of crucial enzymes like ATP-synthase and G6PDH, in the liver of the southern population, could be related to a possible local adaptation. This southern peripheral population is spatially distant from northern core populations and has experienced dissimilar ecological conditions; thus it may contain genotypes that confer resilience to climate changes.


Asunto(s)
Lenguado/metabolismo , Hipoxia , Proteoma , Temperatura , Animales , Cambio Climático , Francia , Portugal , Estrés Fisiológico
10.
BMC Microbiol ; 16(1): 266, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27821062

RESUMEN

BACKGROUND: The better understanding of how intestinal microbiota interacts with fish health is one of the key to sustainable aquaculture development. The present experiment aimed at correlating active microbiota associated to intestinal mucosa with Specific Growth Rate (SGR) and Hypoxia Resistance Time (HRT) in European sea bass individuals submitted to different nutritional histories: the fish were fed either standard or unbalanced diets at first feeding, and then mixed before repeating the dietary challenge in a common garden approach at the juvenile stage. RESULTS: A diet deficient in essential fatty acids (LH) lowered both SGR and HRT in sea bass, especially when the deficiency was already applied at first feeding. A protein-deficient diet with high starch supply (HG) reduced SGR to a lesser extent than LH, but it did not affect HRT. In overall average, 94 % of pyrosequencing reads corresponded to Proteobacteria, and the differences in Operational Taxonomy Units (OTUs) composition were mildly significant between experimental groups, mainly due to high individual variability. The highest and the lowest Bray-Curtis indices of intra-group similarity were observed in the two groups fed standard starter diet, and then mixed before the final dietary challenge with fish already exposed to the nutritional deficiency at first feeding (0.60 and 0.42 with diets HG and LH, respectively). Most noticeably, the median percentage of Escherichia-Shigella OTU_1 was less in the group LH with standard starter diet. Disregarding the nutritional history of each individual, strong correlation appeared between (1) OTU richness and SGR, and (2) dominance index and HRT. The two physiological traits correlated also with the relative abundance of distinct OTUs (positive correlations: Pseudomonas sp. OTU_3 and Herbaspirillum sp. OTU_10 with SGR, Paracoccus sp. OTU_4 and Vibrio sp. OTU_7 with HRT; negative correlation: Rhizobium sp. OTU_9 with HRT). CONCLUSIONS: In sea bass, gut microbiota characteristics and physiological traits of individuals are linked together, interfering with nutritional history, and resulting in high variability among individual microbiota. Many samples and tank replicates seem necessary to further investigate the effect of experimental treatments on gut microbiota composition, and to test the hypothesis whether microbiotypes may be delineated in fish.


Asunto(s)
Alimentación Animal/análisis , Bacterias/aislamiento & purificación , Lubina/microbiología , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Oxígeno/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Lubina/crecimiento & desarrollo , Lubina/metabolismo , Oxígeno/análisis , Filogenia
11.
J Comp Physiol B ; 185(7): 755-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26205950

RESUMEN

Climate change challenges the capacity of fishes to thrive in their habitat. However, through phenotypic diversity, they demonstrate remarkable resilience to deteriorating conditions. In fish populations, inter-individual variation in a number of fitness-determining physiological traits, including cardiac performance, is classically observed. Information about the cellular bases of inter-individual variability in cardiac performance is scarce including the possible contribution of excitation-contraction (EC) coupling. This study aimed at providing insight into EC coupling-related Ca(2+) response and thermal plasticity in the European sea bass (Dicentrarchus labrax). A cell population approach was used to lay the methodological basis for identifying the cellular determinants of cardiac performance. Fish were acclimated at 12 and 22 °C and changes in intracellular calcium concentration ([Ca(2+)]i) following KCl stimulation were measured using Fura-2, at 12 or 22 °C-test. The increase in [Ca(2+)]i resulted primarily from extracellular Ca(2+) entry but sarcoplasmic reticulum stores were also shown to be involved. As previously reported in sea bass, a modest effect of adrenaline was observed. Moreover, although the response appeared relatively insensitive to an acute temperature change, a difference in Ca(2+) response was observed between 12- and 22 °C-acclimated fish. In particular, a greater increase in [Ca(2+)]i at a high level of adrenaline was observed in 22 °C-acclimated fish that may be related to an improved efficiency of adrenaline under these conditions. In conclusion, this method allows a rapid screening of cellular characteristics. It represents a promising tool to identify the cellular determinants of inter-individual variability in fishes' capacity for environmental adaptation.


Asunto(s)
Lubina/metabolismo , Calcio/metabolismo , Acoplamiento Excitación-Contracción/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Cloruro de Potasio/farmacología , Aclimatación , Animales , Relación Dosis-Respuesta a Droga , Epinefrina/farmacología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Temperatura , Factores de Tiempo
12.
Mar Pollut Bull ; 95(2): 658-64, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-25636829

RESUMEN

Juvenile flounders (Platichthys flesus), collected in two estuaries with similar temperature regimes (the heavily polluted Seine and the moderately contaminated Vilaine), were submitted to a common garden experiment. After an acclimation period, both populations were challenged by a thermal stress (9-24°C for 15days, then maintenance at 24°C for 19days). The condition factor of the Vilaine fish increased in both conditions, while it decreased for the heated Seine flounders after 34days. The expression of genes related to the energetic metabolism was measured in the liver. The expression levels for ATP-F0 and COII were significantly reduced for heated vs. standard fish from both estuaries, while a decrease of the 12S expression was detected only in heated vs. standard fish from the Seine estuary. Thus, it is suggested that highly contaminated fish from Seine could display a lower tolerance to thermal stress, compared to moderately contaminated fish from Vilaine.


Asunto(s)
Monitoreo del Ambiente , Lenguado/fisiología , Estrés Fisiológico , Temperatura , Contaminantes del Agua/toxicidad , Animales , Estuarios , Lenguado/metabolismo , Tolerancia Inmunológica , Hígado , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA