Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Am Chem Soc ; 146(19): 13236-13246, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701635

RESUMEN

Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.

2.
ACS Appl Mater Interfaces ; 16(4): 5286-5293, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38258752

RESUMEN

Wetting of a solid by a liquid is relevant for a broad range of natural and technological processes. This process is complex and involves the generation of heat, which is still poorly understood especially in nanoconfined systems. In this article, scanning transitiometry was used to measure and evaluate the pressure-driven heat of intrusion of water into solid ZIF-8 powder within the temperature range of 278.15-343.15 K. The conditions examined included the presence and absence of atmospheric gases, basic pH conditions, solid sample origins, and temperature. Simultaneously with these experiments, molecular dynamics simulations were conducted to elucidate the changing behavior of water as it enters into ZIF-8. The results are rationalized within a temperature-dependent thermodynamic cycle. This cycle describes the temperature-dependent process of ZIF-8 filling, heating, emptying, and cooling with respect to the change of internal energy of the cycle from the calculated change in the specific heat capacity of the system. At 298 K the experimental heat of intrusion per gram of ZIF-8 was found to be -10.8 ± 0.8 J·g-1. It increased by 19.2 J·g-1 with rising temperature to 343 K which is in a reasonable match with molecular dynamic simulations that predicted 16.1 J·g-1 rise. From these combined experiments, the role of confined water in heat of intrusion of ZIF-8 is further clarified.

3.
J Phys Chem Lett ; 15(4): 880-887, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241150

RESUMEN

Heat and the work of compression/decompression are among the basic properties of thermodynamic systems. Being relevant to many industrial and natural processes, this thermomechanical energy is challenging to tune due to fundamental boundaries for simple fluids. Here via direct experimental and atomistic observations, we demonstrate, for fluids consisting of nanoporous material and a liquid, one can overcome these limitations and noticeably affect both thermal and mechanical energies of compression/decompression exploiting preferential intrusion of water from aqueous solutions into subnanometer pores. We hypothesize that this effect is due to the enthalpy of dilution manifesting itself as the aqueous solution concentrates upon the preferential intrusion of pure water into pores. We suggest this genuinely subnanoscale phenomenon can be potentially a strategy for controlling the thermomechanical energy of microporous liquids and tuning the wetting/dewetting heat of nanopores relevant to a variety of natural and technological processes spanning from biomedical applications to oil-extraction and renewable energy.

4.
Nano Lett ; 23(23): 10682-10686, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38033298

RESUMEN

Flexible nanoporous materials are of great interest for applications in many fields such as sensors, catalysis, material separation, and energy storage. Of these, metal-organic frameworks (MOFs) are the most explored thus far. However, tuning their flexibility for a particular application remains challenging. In this work, we explore the effect of the exogenous property of crystallite size on the flexibility of the ZIF-8 MOF. By subjecting hydrophobic ZIF-8 to hydrostatic compression with water, the flexibility of its empty framework and the giant negative compressibility it experiences during water intrusion were recorded via in operando synchrotron irradiation. It was observed that as the crystallite size is reduced to the nanoscale, both flexibility and the negative compressibility of the framework are reduced by ∼25% and ∼15%, respectively. These results pave the way for exogenous tuning of flexibility in MOFs without altering their chemistries.

5.
J Chem Phys ; 159(18)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37955326

RESUMEN

Hydrophobicity has proven fundamental in an inexhaustible amount of everyday applications. Material hydrophobicity is determined by chemical composition and geometrical characteristics of its macroscopic surface. Surface roughness or texturing enhances intrinsic hydrophilic or hydrophobic characteristics of a material. Here we consider crystalline surfaces presenting molecular-scale texturing typical of crystalline porous materials, e.g., metal-organic frameworks. In particular, we investigate one such material with remarkable hydrophobic qualities, ZIF-8. We show that ZIF-8 hydrophobicity is driven not only by its chemical composition but also its sub-nanoscale surface corrugations, a physical enhancement rare amongst hydrophobes. Studying ZIF-8's hydrophobic properties is challenging as experimentally it is difficult to distinguish between the materials' and the macroscopic corrugations' contributions to the hydrophobicity. The computational contact angle determination is also difficult as the standard "geometric" technique of liquid nanodroplet deposition is prone to many artifacts. Here, we characterise ZIF-8 hydrophobicity via: (i) the "geometric" approach and (ii) the "energetic" method, utilising the Young-Dupré formula and computationally determining the liquid-solid adhesion energy. Both approaches reveal nanoscale Wenzel-like bathing of the corrugated surface. Moreover, we illustrate the importance of surface linker termination in ZIF-8 hydrophobicity, which reduces when varied from sp3 N to sp2 N termination. We also consider halogenated analogues of the methyl-imidazole linker, which promote the transition from nanoWenzel-like to nanoCassie-Baxter-like states, further enhancing surface hydrophobicity. Present results reveal the complex interface physics and chemistry between water and complex porous, molecular crystalline surfaces, providing a hint to tune their hydrophobicity.

6.
Nano Lett ; 23(12): 5430-5436, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37294683

RESUMEN

Zeolitic Imidazolate Frameworks (ZIF) find application in storage and dissipation of mechanical energy. Their distinctive properties linked to their (sub)nanometer size and hydrophobicity allow for water intrusion only under high hydrostatic pressure. Here we focus on the popular ZIF-8 material investigating the intrusion mechanism in its nanoscale cages, which is the key to its rational exploitation in target applications. In this work, we used a joint experimental/theoretical approach combining in operando synchrotron experiments during high-pressure intrusion experiments, molecular dynamics simulations, and stochastic models to reveal that water intrusion into ZIF-8 occurs by a cascade filling of connected cages rather than a condensation process as previously assumed. The reported results allowed us to establish structure/function relations in this prototypical microporous material, representing an important step to devise design rules to synthesize porous media.

7.
J Colloid Interface Sci ; 645: 775-783, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37172487

RESUMEN

HYPOTHESIS: The behavior of Heterogeneous Lyophobic Systems (HLSs) comprised of a lyophobic porous material and a corresponding non-wetting liquid is affected by a variety of different structural parameters of the porous material. Dependence on exogenic properties such as crystallite size is desirable for system tuning as they are much more facilely modified. We explore the dependence of intrusion pressure and intruded volume on crystallite size, testing the hypothesis that the connection between internal cavities and bulk water facilitates intrusion via hydrogen bonding, a phenomenon that is magnified in smaller crystallites with a larger surface/volume ratio. EXPERIMENTS: Water intrusion/extrusion pressures and intrusion volume were experimentally measured for ZIF-8 samples of various crystallite sizes and compared to previously reported values. Alongside the practical research, molecular dynamics simulations and stochastic modeling were performed to illustrate the effect of crystallite size on the properties of the HLSs and uncover the important role of hydrogen bonding within this phenomenon. FINDINGS: A reduction in crystallite size led to a significant decrease of intrusion and extrusion pressures below 100 nm. Simulations indicate that this behavior is due to a greater number of cages being in proximity to bulk water for smaller crystallites, allowing cross-cage hydrogen bonds to stabilize the intruded state and lower the threshold pressure of intrusion and extrusion. This is accompanied by a reduction in the overall intruded volume. Simulations demonstrate that this phenomenon is linked to ZIF-8 surface half-cages exposed to water being occupied by water due to non-trivial termination of the crystallites, even at atmospheric pressure.

8.
Molecules ; 27(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35684537

RESUMEN

We report a series of calculations to elucidate one possible mechanism of SO2 chemisorption in amino acid-based ionic liquids. Such systems have been successfully exploited as CO2 absorbents and, since SO2 is also a by-product of fossil fuels' combustion, their ability in capturing SO2 has been assessed by recent experiments. This work is exclusively focused on evaluating the efficiency of the chemical trapping of SO2 by analyzing its reaction with the amino group of the amino acid. We have found that, overall, SO2 is less reactive than CO2, and that the specific amino acid side chain (either acid or basic) does not play a relevant role. We noticed that bimolecular absorption processes are quite unlikely to take place, a notable difference with CO2. The barriers along the reaction paths are found to be non-negligible, around 7-11 kcal/mol, and the thermodynamic of the reaction appears, from our models, unfavorable.


Asunto(s)
Líquidos Iónicos , Aminoácidos/química , Aniones/química , Dióxido de Carbono/química , Líquidos Iónicos/química , Compuestos Orgánicos , Termodinámica
9.
Biophys Rev ; 13(1): 147-160, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33747249

RESUMEN

Boosted by the simplicity of their synthesis and low toxicity, cholinium and amino acid-based ionic liquids have attracted the attention of researchers in many different fields ranging from computational chemistry to electrochemistry and medicine. Among the uncountable IL variations, these substances occupy a space on their own due to their exceptional biocompatibility that stems from being entirely made by metabolic molecular components. These substances have undergone a rather intensive research activity because of the possibility of using them as greener replacements for traditional ionic liquids. We present here a short review in the attempt to provide a compendium of the state-of-the-art scientific research about this special class of ionic liquids based on the combination of amino acid anions and cholinium cations.

10.
ChemistryOpen ; 9(11): 1153-1160, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33204587

RESUMEN

Absorption and capture of CO2 directly from sources represents one of the major tools to reduce its emission in the troposphere. One of the possibilities is to incorporate CO2 inside a liquid exploiting its propensity to react with amino groups to yield carbamic acid or carbamates. A particular class of ionic liquids, based on amino acids, appear to represent a possible efficient medium for CO2 capture because, at difference with current industrial setups, they have the appeal of a biocompatible and environmentally benign solution. We have investigated, by means of highly accurate computations, the feasibility of the reaction that incorporates CO2 in an amino acid anion with a protic side chain and ultimately transforms it into a carbamate derivative. Through an extensive exploration of the possible reaction mechanisms, we have found that different prototypes of amino acid anions present barrierless reaction mechanisms toward CO2 absorption.


Asunto(s)
Ácido Aspártico/química , Carbamatos/síntesis química , Dióxido de Carbono/química , Glicina/química , Homocisteína/química , Líquidos Iónicos/química , Cinética , Modelos Químicos , Termodinámica , Agua/química
11.
J Phys Chem B ; 124(10): 1955-1964, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32037824

RESUMEN

We present a computational analysis of the complex proton-transfer processes in two protic ionic liquids based on phosphorylated amino acid anions. The structure and the short time dynamics have been analyzed via ab initio and semi-empirical molecular dynamics. Given the presence of mobile protons on the side chain, such ionic liquids may represent a viable prototype of highly conductive ionic mediums. The results of our simulations are not entirely satisfactory in this respect. Our results indicate that conduction in these liquids may be limited due to a quick quenching of the proton-transfer processes. In particular, we have found that, while proton migration does occur on very short timescales, the amino groups act as proton scavengers preventing an efficient proton migration. Despite their limits as conductive mediums, we show that these ionic liquids possess an unconventional microscopic structure, where the anionic component is made by amino acid anions that the aforementioned proton transfer has transformed into zwitterionic isomers. This unusual chemical structure is relevant because of the recent use of amino acid-based ionic liquids, such as CO2 absorbent.

12.
J Phys Chem B ; 123(26): 5568-5576, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31185161

RESUMEN

An analysis of the complex proton transfer processes in certain protic ionic liquids, based on amino acid anions, has been carried out through ab initio molecular dynamics in the view of finding naturally conductive and pure mediums. The systems analyzed here might serve as chemical prototypes for pure and dry ionic liquids where mobile protons can act as fast charge carriers. We have exploited the natural tendency of these liquids to form a complex network of hydrogen bonds. The presence of such a network allows the naturally repulsive interaction between like charge ions to be weakened to the point that a proton migration process inside the anionic component of the fluid becomes possible. We have also seen that the extent of these proton migrations is sizable for carboxylic based amino acid anions, while it is very limited for sulfur containing ones.

13.
Eur J Mass Spectrom (Chichester) ; 25(1): 133-141, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30563367

RESUMEN

The gas-phase structure of protonated ß-methylaminoalanine was investigated using infrared multiple photon dissociation spectroscopy in the C-H, N-H, O-H stretching region (2700-3800 cm-1) and the fingerprint region (1000-1900 cm-1). Calculations using density functional theory methods show that the lowest energy structures prefer protonation of the secondary amine. Formation of hydrogen bonds between the primary and secondary amine, and the secondary amine and carboxylic oxygen further stabilize the lowest energy structure. The infrared spectrum of the lowest energy structure originating with harmonic density functional theory has features that generally match the positions of the experimental spectra; however, the overall agreement with the experimental spectrum is poor. Molecular dynamics calculations were used to generate a gas-phase infrared spectrum. With these calculations a reasonable match with the experimental spectrum, especially in the high-energy region, was obtained. The results of the molecular dynamics simulation support the density functional theory calculations, with protonation of the secondary amine and the formation of a hydrogen bond between the protonated secondary amine and the primary amine. This work shows the importance of accounting for anharmonic effects in systems with very strong intramolecular hydrogen bonding.

14.
J Phys Chem B ; 122(9): 2635-2645, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29432015

RESUMEN

We explore the structure of a series of protic Ionic Liquids based on the choline cation and amino acid anions. In the series, the length and the branching of the amino acid alkyl chain varies. Ab initio molecular dynamics, X-ray diffraction measurements, and infrared spectra have been used to provide a reliable picture of the short-range structure and of the short-time dynamic process that characterize the fluids. We have put special emphasis on the peculiar and complicated network of hydrogen bonds that stem from the amphoteric nature of the anion moiety. The use of ab initio molecular dynamics allows us to calculate the "exact" charge density of the system and hence to obtain fairly accurate infrared spectra that, in turn, have been used to assign the experimental ones.

15.
ACS Omega ; 3(9): 10589-10600, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31459182

RESUMEN

The local structure of a series of homologous protic ionic liquids (PILs) is investigated using ab initio computations and ab initio-based molecular dynamics. The purpose of this work is to show that in PILs the network of hydrogen bonds may promote like-charge clustering between anionic species. We correlate the theoretical evidence of this possibility with viscosity experimental data. The homologous series of liquids is obtained by coupling choline with amino acid anions and varying the side chain. We find that the frictional properties of the liquids are clearly connected to the ability of the side chain to establish additional hydrogen bonds (other than the trivial cation-anion interaction). We also show that the large variation of bulk properties along the series of compounds can be explained by assuming that one of the sources of friction in the bulk liquid is the like-charge interaction between anions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA