Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 4(7): eaar6297, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29978041

RESUMEN

The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer Double Focusing Mass Spectrometer on board the European Space Agency's Rosetta spacecraft detected the major isotopes of the noble gases argon, krypton, and xenon in the coma of comet 67P/Churyumov-Gerasimenko. Earlier, it was found that xenon exhibits an isotopic composition distinct from anywhere else in the solar system. However, argon isotopes, within error, were shown to be consistent with solar isotope abundances. This discrepancy suggested an additional exotic component of xenon in comet 67P/Churyumov-Gerasimenko. We show that krypton also exhibits an isotopic composition close to solar. Furthermore, we found the argon to krypton and the krypton to xenon ratios in the comet to be lower than solar, which is a necessity to postulate an addition of exotic xenon in the comet.

2.
Philos Trans A Math Phys Eng Sci ; 375(2097)2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28554975

RESUMEN

The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'.

3.
Nature ; 538(7623): 72-74, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27602514

RESUMEN

The presence of solid carbonaceous matter in cometary dust was established by the detection of elements such as carbon, hydrogen, oxygen and nitrogen in particles from comet 1P/Halley. Such matter is generally thought to have originated in the interstellar medium, but it might have formed in the solar nebula-the cloud of gas and dust that was left over after the Sun formed. This solid carbonaceous material cannot be observed from Earth, so it has eluded unambiguous characterization. Many gaseous organic molecules, however, have been observed; they come mostly from the sublimation of ices at the surface or in the subsurface of cometary nuclei. These ices could have been formed from material inherited from the interstellar medium that suffered little processing in the solar nebula. Here we report the in situ detection of solid organic matter in the dust particles emitted by comet 67P/Churyumov-Gerasimenko; the carbon in this organic material is bound in very large macromolecular compounds, analogous to the insoluble organic matter found in the carbonaceous chondrite meteorites. The organic matter in meteorites might have formed in the interstellar medium and/or the solar nebula, but was almost certainly modified in the meteorites' parent bodies. We conclude that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before and/or after being incorporated into the comet.

4.
Sci Adv ; 2(5): e1600285, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27386550

RESUMEN

The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the (13)C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth.


Asunto(s)
Aminoácidos/química , Meteoroides , Fósforo/química , Prebióticos/análisis , Espectrometría de Masas/métodos
5.
Sci Adv ; 1(8): e1500377, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26601264

RESUMEN

Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope (36)Ar and by the (36)Ar/(38)Ar ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth's major volatiles.

6.
Science ; 349(6247): aab0689, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26228156

RESUMEN

Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae's initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds­methyl isocyanate, acetone, propionaldehyde, and acetamide­that had not previously been reported in comets.

7.
Nature ; 518(7538): 216-8, 2015 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-25624103

RESUMEN

Comets are composed of dust and frozen gases. The ices are mixed with the refractory material either as an icy conglomerate, or as an aggregate of pre-solar grains (grains that existed prior to the formation of the Solar System), mantled by an ice layer. The presence of water-ice grains in periodic comets is now well established. Modelling of infrared spectra obtained about ten kilometres from the nucleus of comet Hartley 2 suggests that larger dust particles are being physically decoupled from fine-grained water-ice particles that may be aggregates, which supports the icy-conglomerate model. It is known that comets build up crusts of dust that are subsequently shed as they approach perihelion. Micrometre-sized interplanetary dust particles collected in the Earth's stratosphere and certain micrometeorites are assumed to be of cometary origin. Here we report that grains collected from the Jupiter-family comet 67P/Churyumov-Gerasimenko come from a dusty crust that quenches the material outflow activity at the comet surface. The larger grains (exceeding 50 micrometres across) are fluffy (with porosity over 50 per cent), and many shattered when collected on the target plate, suggesting that they are agglomerates of entities in the size range of interplanetary dust particles. Their surfaces are generally rich in sodium, which explains the high sodium abundance in cometary meteoroids. The particles collected to date therefore probably represent parent material of interplanetary dust particles. This argues against comet dust being composed of a silicate core mantled by organic refractory material and then by a mixture of water-dominated ices. At its previous recurrence (orbital period 6.5 years), the comet's dust production doubled when it was between 2.7 and 2.5 astronomical units from the Sun, indicating that this was when the nucleus shed its mantle. Once the mantle is shed, unprocessed material starts to supply the developing coma, radically changing its dust component, which then also contains icy grains, as detected during encounters with other comets closer to the Sun.

8.
Faraday Discuss ; 147: 495-508; discussion 527-52, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21302562

RESUMEN

HCN polymers are complex organic solids resulting from the polymerization of hydrogen cyanide (HCN) molecules. They have been suspected to contribute to the refractory carbonaceous component of comets as well as the distributed CN sources in cometary atmospheres. Titan's tholins are also organic compounds produced in a laboratory setting but result from the complex chemistry between N2 and CH4 induced by UV radiation or electric discharges. Some of these compounds have optical properties in the visible range fairly similar to those of Titan's aerosols or those of the reddish surfaces of many icy satellites and small bodies. It has been proposed that HCN polymers are constituents of tholins but this statement has never received any clear demonstration. We report here on the comparative analysis of tholins and HCN polymers in order to definitely establish if the molecules identified in the HCN polymers are present in the tholins as well. First, we present a global comparison of HCN polymers with three kinds of tholins, using elemental analysis measurements, infrared spectroscopy and very high resolution mass spectrometry of their soluble fraction. We show that the chemical composition of the HCN polymers is definitely simpler than that of any of the tholins studied. Second, we focus on six ions representative of the composition of HCN polymers and using mass spectrometry (HRMS and MS/HRMS), we determine that these tholins contain at best a minor fraction of this kind of HCN polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA