RESUMEN
While the pathology of acute hemorrhagic fever with renal syndrome (HFRS) has been widely researched, details on the chronic HFRS sequelae remain mainly unexplored. In this study, we analyzed the clinical and laboratory characteristics of 30 convalescent HFRS patients 14 years after the disease contraction, mainly emphasizing several endothelial dysfunction parameters. Convalescent HFRS patients exhibited significantly higher serum levels of erythrocyte sedimentation rate, von Willebrand factor, uric acid, C-reactive protein and immunoglobulin A when compared to healthy individuals. Furthermore, 24 h urine analyses revealed significantly lower sodium and potassium urine levels, as well as significantly higher proteinuria, microalbumin levels and ß2-microglobulin levels when compared to healthy individuals. First morning urine analysis revealed significantly higher levels of hematuria in convalescent HFRS patients. None of the additional analyzed endothelium dysfunction markers were significantly different in post-HFRS patients and healthy individuals, including serum and urine P-selectin, E-selectin, soluble intercellular adhesion molecule 1, vascular intercellular adhesion molecule 1 (sVCAM-1) and vascular endothelial growth factor (VEGF). However, binary logistic regression revealed a weak association of serum sVCAM-1 and urine VEGF levels with HFRS contraction. Generally, our findings suggest mild chronic inflammation and renal dysfunction levels in convalescent HFRS patients 14 years after the disease contraction.
RESUMEN
The COVID-19 pandemic is among the deadliest infectious diseases to have emerged in recent history. As with all past pandemics, the specific mechanism of its emergence in humans remains unknown. Nevertheless, a large body of virologic, epidemiologic, veterinary, and ecologic data establishes that the new virus, SARS-CoV-2, evolved directly or indirectly from a ß-coronavirus in the sarbecovirus (SARS-like virus) group that naturally infect bats and pangolins in Asia and Southeast Asia. Scientists have warned for decades that such sarbecoviruses are poised to emerge again and again, identified risk factors, and argued for enhanced pandemic prevention and control efforts. Unfortunately, few such preventive actions were taken resulting in the latest coronavirus emergence detected in late 2019 which quickly spread pandemically. The risk of similar coronavirus outbreaks in the future remains high. In addition to controlling the COVID-19 pandemic, we must undertake vigorous scientific, public health, and societal actions, including significantly increased funding for basic and applied research addressing disease emergence, to prevent this tragic history from repeating itself.
Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/etiología , Neumonía Viral/etiología , Animales , Betacoronavirus/clasificación , Betacoronavirus/genética , COVID-19 , Quirópteros/virología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/transmisión , Humanos , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/transmisión , Salud Pública , SARS-CoV-2RESUMEN
The ongoing pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgency to develop experimental systems for studying this virus and identifying countermeasures. We report a reverse genetic system for SARS-CoV-2. Seven complimentary DNA (cDNA) fragments spanning the SARS-CoV-2 genome were assembled into a full-genome cDNA. RNA transcribed from the full-genome cDNA was highly infectious after electroporation into cells, producing 2.9 × 106 plaque-forming unit (PFU)/mL of virus. Compared with a clinical isolate, the infectious-clone-derived SARS-CoV-2 (icSARS-CoV-2) exhibited similar plaque morphology, viral RNA profile, and replication kinetics. Additionally, icSARS-CoV-2 retained engineered molecular markers and did not acquire other mutations. We generated a stable mNeonGreen SARS-CoV-2 (icSARS-CoV-2-mNG) by introducing this reporter gene into ORF7 of the viral genome. icSARS-CoV-2-mNG was successfully used to evaluate the antiviral activities of interferon (IFN). Collectively, the reverse genetic system and reporter virus provide key reagents to study SARS-CoV-2 and develop countermeasures.
Asunto(s)
Betacoronavirus/genética , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , ADN Complementario/genética , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/patogenicidad , Neumonía Viral/virología , Animales , Antivirales/uso terapéutico , COVID-19 , Chlorocebus aethiops , Células Clonales , Infecciones por Coronavirus/tratamiento farmacológico , Genes Reporteros/genética , Genoma Viral/genética , Interferones/uso terapéutico , Pandemias , Neumonía Viral/tratamiento farmacológico , ARN Viral/genética , SARS-CoV-2 , Células Vero/virología , Replicación Viral/fisiologíaRESUMEN
Recent reports from Europe and the USA described Seoul orthohantavirus infection in pet rats and their breeders/owners, suggesting the potential emergence of a "new" public health problem. Wild and laboratory rat-induced Seoul infections have, however, been described since the early eighties, due to the omnipresence of the rodent reservoir, the brown rat Rattus norvegicus. Recent studies showed no fundamental differences between the pathogenicity and phylogeny of pet rat-induced Seoul orthohantaviruses and their formerly described wild or laboratory rat counterparts. The paucity of diagnosed Seoul virus-induced disease in the West is in striking contrast to the thousands of cases recorded since the 1980s in the Far East, particularly in China. This review of four continents (Asia, Europe, America, and Africa) puts this "emerging infection" into a historical perspective, concluding there is an urgent need for greater medical awareness of Seoul virus-induced human pathology in many parts of the world Given the mostly milder and atypical clinical presentation, sometimes even with preserved normal kidney function, the importance of simple but repeated urine examination is stressed, since initial but transient proteinuria and microhematuria are rarely lacking.
Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/virología , Virus Seoul/fisiología , Animales , Animales de Laboratorio , Animales Salvajes , Enfermedades Transmisibles Emergentes/transmisión , Geografía Médica , Salud Global , Fiebre Hemorrágica con Síndrome Renal/transmisión , Mascotas , RatasRESUMEN
Although Seoul orthohantavirus is the only globally spread hantavirus pathogen, few confirmed human infections with this virus have been reported in Western countries, suggesting lower medical awareness of the milder, transient, and often chameleon-like symptoms of this zoonosis. We describe lesser known clinical and laboratory characteristics to help improve underreporting of this virus.
Asunto(s)
Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Fiebre Hemorrágica con Síndrome Renal/virología , Virus Seoul , Humanos , Reacción en Cadena de la Polimerasa , Pruebas Serológicas , Índice de Severidad de la Enfermedad , Evaluación de SíntomasRESUMEN
The 10th International Conference on Hantaviruses, organized by the International Society on Hantaviruses, was held from May 31-June 3, 2016 at Colorado State University, Fort Collins, CO, USA. These conferences have been held every three years since 1980. The current report summarizes research presented on all aspects of hantavirology: ecology and epidemiology, virus replication, phylogeny, pathogenesis, immune response, clinical studies, vaccines and therapeutics.
Asunto(s)
Infecciones por Hantavirus/prevención & control , Infecciones por Hantavirus/virología , Orthohantavirus/clasificación , Orthohantavirus/fisiología , Animales , Infecciones por Hantavirus/tratamiento farmacológico , Infecciones por Hantavirus/epidemiología , HumanosRESUMEN
Addressing the threat of infectious diseases, whether natural, the results of a laboratory accident, or a deliberate act of bioterrorism, requires no corner of the world be ignored. The mobility of infectious agents and their rapid adaptability, whether to climate change or socioeconomic drivers or both, demand the science employed to understand these processes be advanced and tailored to a country or a region, but with a global vision. In many parts of the world, largely because of economic struggles, scientific capacity has not kept pace with the need to accomplish this goal and has left these regions and hence the world vulnerable to infectious disease outbreaks. To build scientific capability in a developing region requires cooperation and participation of experienced international scientists who understand the issues and are committed to educate the next generations of young investigators in the region. These efforts need to be coupled with the understanding and resolve of local governments and international agencies to promote an aggressive science agenda. International collaborative scientific investigation of infectious diseases not only adds significantly to scientific knowledge, but it promotes health security, international trust, and long-term economic benefit to the region involved. This premise is based on the observation that the most powerful human inspiration is that which brings peoples together to work on and solve important global challenges. The republics of the former Soviet Union provide a valuable case study for the need to rebuild scientific capacity as they are located at the crossroads where many of the world's great epidemics began. The scientific infrastructure and disease surveillance capabilities of the region suffered significant decline after the breakup of the Soviet Union. The U.S. Cooperative Threat Reduction (CTR) Program, a part of the U.S. Department of Defense, together with partner countries, have worked diligently to improve the capabilities in this region to guard against the potential future risk from especially dangerous pathogens. The dissolution of the Soviet Union left behind many scientists still working to study pathogens using antiquated protocols in unsafe laboratories. To address this situation, the CTR program began improving laboratory infrastructure, establishing biosafety and biosecurity programs, and training scientists in modern techniques, with emphasis on biosurveillance and safe containment of especially dangerous pathogens. In the Republic of Georgia, this effort culminated in the construction of a modern containment laboratory, the Richard G. Lugar Center for Public Health Research in Tbilisi to house both isolated especially dangerous pathogens as well as the research to be conducted on these agents. The need now is to utilize and sustain the investment made by CTR by establishing strong public and animal health science programs in these facilities tailored to the needs of the region and the goals for which this investment was made. A similar effort is ongoing in other former Soviet Republics. Here, we provide the analysis and recommendations of an international panel of expert scientists appointed by the Cooperative Biological Engagement Program of the Defense Threat Reduction Agency to provide advice to the stakeholders on the scientific path for the future. The emphasis is on an implementation strategy for decision makers and scientists to consider providing a sustainable biological science program in support of the One Health initiative. Opportunities, potential barriers, and lessons learned while meeting the needs of the Republic of Georgia and the Caucasus region are discussed. It is hoped that this effort will serve as a model for similar scientific needs in not only the former Soviet Union republics but also other regions challenged by infectious diseases where the CTR program operates.
RESUMEN
High-throughput screening (HTS) has been integrated into the drug discovery process, and multiple assay formats have been widely used in many different disease areas but with limited focus on infectious agents. In recent years, there has been an increase in the number of HTS campaigns using infectious wild-type pathogens rather than surrogates or biochemical pathogen-derived targets. Concurrently, enhanced emerging pathogen surveillance and increased human mobility have resulted in an increase in the emergence and dissemination of infectious human pathogens with serious public health, economic, and social implications at global levels. Adapting the HTS drug discovery process to biocontainment laboratories to develop new drugs for these previously uncharacterized and highly pathogenic agents is now feasible, but HTS at higher biosafety levels (BSL) presents a number of unique challenges. HTS has been conducted with multiple bacterial and viral pathogens at both BSL-2 and BSL-3, and pilot screens have recently been extended to BSL-4 environments for both Nipah and Ebola viruses. These recent successful efforts demonstrate that HTS can be safely conducted at the highest levels of biological containment. This review outlines the specific issues that must be considered in the execution of an HTS drug discovery program for high-containment pathogens. We present an overview of the requirements for HTS in high-level biocontainment laboratories.
Asunto(s)
Bioensayo/instrumentación , Contención de Riesgos Biológicos/instrumentación , Evaluación Preclínica de Medicamentos/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Laboratorios , Tecnología Farmacéutica/instrumentación , Diseño de Fármacos , Diseño de Equipo , Análisis de Falla de Equipo , Robótica/instrumentación , Manejo de Especímenes/instrumentaciónRESUMEN
Available evidence demonstrates that direct patient contact and contact with infectious body fluids are the primary modes for Ebola virus transmission, but this is based on a limited number of studies. Key areas requiring further study include (i) the role of aerosol transmission (either via large droplets or small particles in the vicinity of source patients), (ii) the role of environmental contamination and fomite transmission, (iii) the degree to which minimally or mildly ill persons transmit infection, (iv) how long clinically relevant infectiousness persists, (v) the role that "superspreading events" may play in driving transmission dynamics, (vi) whether strain differences or repeated serial passage in outbreak settings can impact virus transmission, and (vii) what role sylvatic or domestic animals could play in outbreak propagation, particularly during major epidemics such as the 2013-2015 West Africa situation. In this review, we address what we know and what we do not know about Ebola virus transmission. We also hypothesize that Ebola viruses have the potential to be respiratory pathogens with primary respiratory spread.
Asunto(s)
Transmisión de Enfermedad Infecciosa , Fiebre Hemorrágica Ebola/transmisión , África Occidental/epidemiología , Animales , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/virología , Humanos , Zoonosis/transmisión , Zoonosis/virologíaRESUMEN
Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 µM and selectivities >10. Three sulfonamide compounds with EC50 values <12 µM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses.
Asunto(s)
Antivirales/administración & dosificación , Antivirales/química , Evaluación Preclínica de Medicamentos/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Virus Nipah/efectos de los fármacos , Virus Nipah/fisiología , Sulfonamidas/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Contención de Riesgos Biológicos/instrumentación , Relación Dosis-Respuesta a Droga , Diseño de Equipo , Análisis de Falla de Equipo , Robótica/instrumentación , Células Vero , Replicación Viral/fisiologíaRESUMEN
Melioidosis is an endemic disease caused by the bacterium Burkholderia pseudomallei. Concerns exist regarding B. pseudomallei use as a potential bio-threat agent causing persistent infections and typically manifesting as severe pneumonia capable of causing fatal bacteremia. Development of suitable therapeutics against melioidosis is complicated due to high degree of genetic and phenotypic variability among B. pseudomallei isolates and lack of data establishing commonly accepted strains for comparative studies. Further, the impact of strain variation on virulence, disease presentation, and mortality is not well understood. Therefore, this study evaluate and compare the virulence and disease progression of B. pseudomallei strains K96243 and HBPUB10303a, following aerosol challenge in a standardized BALB/c mouse model of infection. The natural history analysis of disease progression monitored conditions such as weight, body temperature, appearance, activity, bacteremia, organ and tissue colonization (pathological and histological analysis) and immunological responses. This study provides a detailed, direct comparison of infection with different B. pseudomallei strains and set up the basis for a standardized model useful to test different medical countermeasures against Burkholderia species. Further, this protocol serves as a guideline to standardize other bacterial aerosol models of infection or to define biomarkers of infectious processes caused by other intracellular pathogens.
Asunto(s)
Burkholderia pseudomallei/patogenicidad , Melioidosis/microbiología , Animales , Carga Bacteriana , Análisis Químico de la Sangre , Temperatura Corporal , Peso Corporal , Quimiocinas/sangre , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Recuento de Leucocitos , Pulmón/metabolismo , Melioidosis/sangre , Melioidosis/mortalidad , Melioidosis/patología , Ratones , Mortalidad , VirulenciaRESUMEN
Directors of all major BioSafety Level 4 (BSL-4) laboratories in the United States met in 2008 to review the current status of biocontainment laboratory operations and to discuss the potential impact of a proposed 2-person security rule on maximum-containment laboratory operations. Special attention was paid to the value and risks that would result from a requirement that 2 persons be physically present in the laboratory at all times. A consensus emerged indicating that a video monitoring system represents a more efficient, economical standard; provides greater assurance that pathogens are properly manipulated; and offers an increased margin of employee safety and institutional security. The 2-person security rule (1 to work and 1 to observe) may decrease compliance with dual responsibilities of safety and security by placing undue pressure on the person being observed to quickly finish the work, and by placing the observer in the containment environment unnecessarily.
Asunto(s)
Laboratorios/normas , Personal de Laboratorio Clínico/normas , Seguridad/normas , Medidas de Seguridad/normas , Lugar de Trabajo/normas , Humanos , Estados UnidosRESUMEN
Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.
Asunto(s)
ADN Viral/genética , Evolución Molecular , Variación Genética , Genoma Viral , Viruela/virología , Virus de la Viruela/genética , Brotes de Enfermedades , Eliminación de Gen , Genómica , Humanos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Proteoma/análisis , Proteoma/genética , Recombinación Genética , Análisis de Secuencia de ADN , Viruela/epidemiología , Viruela/mortalidad , Virus de la Viruela/clasificación , Virus de la Viruela/aislamiento & purificación , Virus de la Viruela/patogenicidad , Proteínas Virales/química , Proteínas Virales/genética , Virulencia/genéticaRESUMEN
Smallpox virus (variola) poses a significant threat as an agent of bioterrorism. To mitigate this risk, antiviral drugs and an improved vaccine are urgently needed. Satisfactory demonstration of protective efficacy against authentic variola will require development of an animal model in which variola produces a disease course with features consistent with human smallpox. Toward this end, cynomolgus macaques were exposed to several variola strains through aerosol and/or i.v. routes. Two strains, Harper and India 7124, produced uniform acute lethality when inoculated i.v. in high doses (10(9) plaque-forming units). Lower doses resulted in less fulminant, systemic disease and lower mortality. Animals that died had profound leukocytosis, thrombocytopenia, and elevated serum creatinine levels. After inoculation, variola was disseminated by means of a monocytic cell-associated viremia. Distribution of viral antigens by immunohistochemistry correlated with the presence of replicating viral particles demonstrated by electron microscopy and pathology in the lymphoid tissues, skin, oral mucosa, gastrointestinal tract, reproductive system, and liver. These particles resembled those seen in human smallpox. High viral burdens in target tissues were associated with organ dysfunction and multisystem failure. Evidence of coagulation cascade activation (D dimers) corroborated histologic evidence of hemorrhagic diathesis. Depletion of T cell-dependent areas of lymphoid tissues occurred, probably as a consequence of bystander apoptotic mechanisms initiated by infected macrophages. Elaboration of cytokines, including IL-6 and IFN-gamma, contribute to a cytokine storm formerly known as "toxemia." A more precise understanding of disease pathogenesis should provide targets for therapeutic intervention, to be used alone or in combination with inhibitors of variola virus replication.
Asunto(s)
Viruela/etiología , Animales , Quimiocinas/biosíntesis , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Humanos , Macaca fascicularis , Viruela/inmunología , Viruela/patología , Viruela/virología , Especificidad de la Especie , Virus de la Viruela/aislamiento & purificación , Virus de la Viruela/patogenicidadRESUMEN
Smallpox has played an unparalleled role in human history and remains a significant potential threat to public health. Despite the historical significance of this disease, we know little about the underlying pathophysiology or the virulence mechanisms of the causative agent, variola virus. To improve our understanding of variola pathogenesis and variola-host interactions, we examined the molecular and cellular features of hemorrhagic smallpox in cynomolgus macaques. We used cDNA microarrays to analyze host gene expression patterns in sequential blood samples from each of 22 infected animals. Variola infection elicited striking and temporally coordinated patterns of gene expression in peripheral blood. Of particular interest were features that appear to represent an IFN response, cell proliferation, immunoglobulin gene expression, viral dose-dependent gene expression patterns, and viral modulation of the host immune response. The virtual absence of a tumor necrosis factor alpha/NF-kappaB-activated transcriptional program in the face of an overwhelming systemic infection suggests that variola gene products may ablate this response. These results provide a detailed picture of the host transcriptional response during smallpox infection, and may help guide the development of diagnostic, therapeutic, and prophylactic strategies.
Asunto(s)
Viruela/sangre , Viruela/genética , Animales , Células Sanguíneas/inmunología , Células Sanguíneas/metabolismo , Células Sanguíneas/patología , Ciclo Celular , División Celular , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Interferones/genética , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/patología , Macaca fascicularis , FN-kappa B/sangre , Análisis de Secuencia por Matrices de Oligonucleótidos , Viruela/inmunología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
BACKGROUND: A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. METHODS: We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. RESULTS: None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. CONCLUSIONS: A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus.